198. 打家劫舍
一个房间只有偷与不偷两种状态,是否被偷取决于前一个房间是否被偷,这种依赖关系要想到递推,想到dp
依然是动规五部曲
- dp数组含义(一般就是函数返回值,就是题目要求的值):这里是被偷的金额dp[i]
- 递推公式:当前房间第i间如果被偷,那紧接着前一个被偷的房间是i-2,也就是说dp[i]=dp[i-2]+nums[i];当前第i间如果没有被偷,那么dp[i]=dp[i-1],总结起来就是dp[i]=max(dp[i-2]+nums[i], dp[i-1])
- 数组初始化:从第0间房开始偷,所以dp[0]=nums[0],dp[1]=max(nums[0],nums[1])
- 遍历顺序:前->后(这个没有物品和背包,所以只有一层for循环)
- dp数组举例分析
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size()==0) return 0;
if(nums.size()==1) return nums[0];
if(nums.size()==2) return max(nums[0],nums[1]);
vector<int> dp(nums.size(),0);
dp[1] = max(nums[0],nums[1]);
dp[0]=nums[0];
for(int i=2;i<nums.size();i++){
dp[i] = max(dp[i-2]+nums[i],dp[i-1]);
}
return dp[nums.size()-1];
}
};
213. 打家劫舍II
相比于上一题的区别是这个成环了,不能同时偷第一间和最后一间
分情况考虑:
①能偷第一间(不一定要偷第一间),遍历范围就是0-nums.size()-2
②能投最后一间(不一定要偷),遍历范围就是1-nums.size()-1
然后把基础的打家劫舍代码放到一个函数里,分情况调用
337.打家劫舍 III
房屋的排布变成了树形结构,需要考虑对于树的遍历,深度优先和广度优先。需要用后序遍历从最后一层的叶子节点开始遍历回到根节点(因为通过递归函数的返回值来做下一步计算)、。
这道题目算是树形dp的入门题目,因为是在树上进行状态转移,二叉树的时候说过递归三部曲,所以这道题需要以递归三部曲为框架,其中融合动规五部曲。
递归三部曲:
- 递归函数的参数和返回值,返回的就是dp数组:dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱,所以本题dp数组就是一个长度为2的数组
- 终止条件:遇到空节点(也是动规的初始化)
- 单层逻辑【遍历:后序】如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0];如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);最后当前节点的状态就是{val2, val1}; 即:{不偷当前节点得到的最大金钱,偷当前节点得到的最大金钱}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int rob(TreeNode* root) {
vector<int> result = robtree(root);
return max(result[0],result[1]);
}
vector<int> robtree(TreeNode* cur){
if(cur==nullptr) return {0,0};
vector<int> left = robtree(cur->left);
vector<int> right = robtree(cur->right);
int val1 = cur->val + left[0]+right[0];//偷当前节点,不能偷左右节点
int val2 = max(left[0],left[1])+max(right[0],right[1]);
return {val1,val2};
}
};