👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
文献来源:
分布式光伏消纳的微电网群共享储能配置策略研究
摘要:共享储能是可再生能源实现经济消纳的解决方案之一,在适度的投资规模下,应尽力实现储能电站容量功率与消纳目标相匹配。对此,提出了考虑新能源消纳的共享储能电站容量功率配置方法,针对储能电站投运成本最低与微能源网运行经济性最优的多目标,建立了双层规划模型,其中外层模型求解电站配置问题,内层模型求解经济消纳率及微能源网优化运行问题,使用Karush-Kuhn-Tucker (KKT)法对模型转化求解。算例分析显示:配置共享储能后,微能源网系统运行成本下降15.01%,新能源消纳率提升至97.06%,共享储能服务商可在4.51年收回投资成本。研究结果证明所提构建双层规划配置的方法能较好地考虑新能源经济消纳,提高共享储能电站与微能源网运行的经济性。
共享储能是一种将传统储能技术与共享经济模式相融合的储能商业应用模式,即储能电站由共
享储能电站服务商投资建设,并以一定价格将储能服务提供给用户,该模式可使用户在避免高额投资的情况下使用储能系统,同时能够借助共享经济的灵活性确保储能系统的高效利用,实现共享储能电站成本的快速回收。
图 1 中电站调度模块可对用户用电需求及时响应,对电站充放电行为进行管理,并实现电能计量服务。相较于传统储能电站,共享储能电站母线与各微网用户分别相连,用户可以通过电站母线完成电能交换,实现多微网系统电能在空间层面的转移。共享储能电站对充放电能量以及微网间交换的能量进行计量并收取服务费用,其中微网间交换功率虽然并不直接流过储能电池,但在计量上同样视为电站先充电再放电。电站服务费用包括从微网购电费用、向微网售电费用以及附加服务费用,由电站调度模块根据电网电价、微网用电状态以及电站荷电状态等参数确定。考虑共享储能电站服务后,用户可在电力不足时选择从储能电站购电,从储能电站购电电价在用电高峰期低于电网购电电价,在用电低谷期高于电网购电电价,以此引导用户在用电高峰期从储能电站购电,从而节省用电成本,促进风光资源的充分利用。
储能电站服务多微网系统运行时,需要对其功率容量进行合理配置,以充分利用储能系统技术特
点,发挥共享储能商业模式优势。共享储能电站建设在用户密集区,在选址上要考虑与多微网系统实现互联,充分利用集群效应以及用户负荷在同一时刻的互补性,故相较于用户分别单独配置储能,其成本更低、储能利用率更高。本文基于双层规划技术对储能功率容量进行决策配置,同时对用户在共享储能服务下的运行方式进行优化分析。共享储能电站配置容量功率决策需要根据地区风电、光伏出力预测值以及用户各种负荷估计值进行综合考虑,从而得到以储能电站年运行成本目标下的最优储能容量功率,同时求解在共享储能服务下多微网系统与储能电站能量交换等
优化运行问题。考虑到新能源出力不确定性较强,电站实际运行中很难保证新能源完全消纳,在考虑新能源完全消纳的条件下配置储能对电站实际运行情况指导意义不强。为充分发挥储能系统新能源消纳作用,引导用户经济消纳风光电源出力,不能盲目以新能源完全消纳为目标配置储能电站,可在保证新能源大部分被消纳的前提下设置一定的经济弃电率,允许分布式新能源电源在一定范围内合理弃电。定义经济消纳率为考虑共享储能服务后,使电站–微网体系年总运行成本最低的微网新能源年综合消纳率,其中电站–微网年运行成本包含电站前期投资成本按设计使用年限折算到各年度的投资成本等年值、微网从电网购电费用与购买燃料成本。
一、分布式光伏消纳的挑战与储能需求
-
时空供需不平衡
分布式光伏的最大出力时段(午间)与用电高峰(晚间)存在显著错位,导致电力难以就地消纳。农村地区尤为突出,10千瓦屋顶光伏年发电量达1万度以上,远超农户年均用电需求(1000-2000度),余电上网加剧配电网压力。 -
配电网承载力不足
分布式光伏的爆发式增长导致超过150个地区出现“红区”(无新增接入空间),即使装机量较少的省份(如黑龙江)也面临消纳极限。户用光伏全额上网收益高于自用,用户缺乏自消纳动力,进一步加重电网负担。 -
政策与市场化推动储能配置
2024年《新型储能制造业高质量发展行动方案》明确支持储能技术发展。多地要求分布式光伏配储比例为装机容量的8%~30%,但需科学规划以避免资源浪费。
二、微电网群共享储能系统(SESS)的架构与功能
-
系统架构
SESS由多个微电网(MG)组成,各MG包含分布式光伏、风机、储能及负荷,通过能量共享机制互联。共享储能系统(SESS)作为核心组件,支持微电网间的功率互济与应急备用。典型架构分为两类:- 集中式共享储能:通过配电网为所有MG提供充放电服务,降低整体投资成本。
- 分布式共享储能:各MG配置独立储能,通过网间功率互济提升灵活性和可靠性。
-
核心功能
- 经济性优化:通过峰谷套利、新能源消纳等模式提升收益。
- 可靠性增强:在故障离网时提供备用容量,支持孤岛运行。
- 低碳协同:结合多目标优化模型,平衡经济性与碳排放。
三、典型配置策略案例
-
容量租赁与动态分配模型
- 共享储能运营商将储能容量划分为动态边界,按需租赁给微电网群,减少容量浪费。例如,储能容量划分为N+1个边界(NN为微电网数量),通过优化模型确定各MG的最优租赁容量。
- 案例:新疆某园区CCHP-SESS系统通过双层优化模型,结合综合需求响应(IDR),实现运行成本降低10.22%,储能利用率提升18.12%。
-
主从博弈与双层优化
- 上层(配电网运营商)与下层(微电网群)通过Stackelberg博弈模型协调购电计划。例如,基于多智能体深度强化学习(MADRL)的协同调度策略,降低通信负担并提升计算效率。
- 案例:某三微网互联系统采用改进协同量子粒子群算法优化负荷频率控制(LFC),提升稳定性与经济性。
-
多场景协同调度
- 冷热电联供(CCHP)微网与SESS结合,通过电、热、冷负荷综合需求响应(IDR)优化能源分配,使清洁能源消纳率趋近100%。
四、共享储能容量规划方法论
-
鲁棒优化与博弈理论
- 双层鲁棒优化:考虑风电不确定性,通过多时间尺度规划提升储能利用率。
- 合作博弈:基于Shapley值法分配收益,确保公平性。例如,城市楼宇集群通过合作博弈实现储能投资成本下降35.12%。
-
误差分配原则
针对风电集群预测误差,按比例分配储能容量需求,结合季节性温度调整配置,使实际收益提升3.6%。 -
动态容量分配
基于用户负荷曲线相似度划分储能需求,例如用电形态相似度较低的用户共享储能后,总容量需求从16.1 MWh降至10.25 MWh,回收周期缩短25%。
五、协同控制算法研究进展
-
多智能体强化学习(MARL)
- 将配电网与微电网群调度问题转化为马尔可夫博弈,通过集中训练-分散执行框架降低通信复杂度。
- 案例:基于混合注意力机制的软Actor-Critic算法,实现多微电网经济调度与碳排放协同优化。
-
分布式优化算法
- 交替方向乘子法(ADMM)分解多微电网集成能源系统(MMIES)问题,通过局部信息交换实现全局最优。
-
改进粒子群算法
- 协同量子粒子群算法优化负荷频率控制(LFC),提升多微网互联系统的动态响应。
六、储能配置经济性评估模型
-
全生命周期成本分析
- 考虑初始投资、运维、退役成本,结合峰谷套利、碳交易等收益,优化储能容量配置。
- 案例:退役电池梯次利用模型中,全生命周期收益提升18%。
-
双层经济性分析
- 上层以场站收入最大为目标,下层以系统发电成本最小为目标,通过迭代计算量化储能收益。
- 案例:蒙西地区采用NSGA-II算法优化储能选址,提升投资净现值。
-
风险-收益权衡模型
- 基于投资组合理论分配储能容量,平衡效益与风险。例如,用户侧储能配置风险值降低15%。
七、未来研究方向与挑战
-
技术瓶颈
- 储能成本(锂电池约1000元/kWh)与循环寿命(约5000次)仍需突破。
- 分布式储能的协同控制算法需进一步提升实时性与鲁棒性。
-
政策与市场机制
- 需完善分时电价、补贴政策,推动分布式光伏与储能参与电力市场交易。
-
智能化与集成化
- 结合人工智能与大数据,实现光伏出力预测、储能调度与电网互动的智能化。
八、总结
微电网群共享储能配置策略是破解分布式光伏消纳难题的关键。通过集中与分布式储能的协同优化、多主体博弈模型设计,以及经济-低碳-可靠多目标权衡,可实现资源高效利用与系统稳定运行。未来需进一步探索低成本储能技术、市场化交易机制及智能化调度算法,推动分布式能源可持续发展。
📚2 运行结果
其他不一一展示。
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]谢雨龙,罗逸飏,李智威等.考虑微网新能源经济消纳的共享储能优化配置[J].高电压技术,2022,48(11):4403-4413.DOI:10.13336/j.1003-6520.hve.20220403.