人工智能的未来———因果推理what if 第11章(统计模型) 文章解读 本书第二部分会围绕以下因果性问题展开:戒烟对体重增加的因果效应均值是多少?在本章,我们会讲述如何使用逆概率加权从观察性数据中估计这一效应。虽然在第二章我们就介绍了逆概率加权,但我们仅仅讨论了它的非参数形式。现在我们会讲述如何在模型中使用逆概率加权。在一定假设下,这一方法能解决高维数据带来的种种问题,并且适用于非二分的治疗变量。我们将用现实世界中 NHEFS 的数据来估计戒烟对体重增加的效应。NHEFS 表示“美国国家健康与营养调查数据 1 期:流行病学跟踪研究”。NHEFS 是由美国国家健康数据中
Causality matters in medical imaging 文献解读 由于典型的语义分割任务是因果关系的,如我们的前列腺癌示例所示,语义分割能够从根本上从未标记数据中受益的希望可能很小。在传统因果框架中,给定X和Y为带标签的数据,X为输入图像数据,Y为目标预测数据,Z为疾病的特征。临床团队能够证明使用人类对磁共振成像( MRI )的解释来诊断前列腺癌的有效性,与传统的诊断测试相比,具有更高的灵敏度和特异性,并通过组织病理学的真相标签得到证实。由于数据特征的差异,训练好的模型在开发测试集上的性能代表在不同环境中部署后的新临床数据上的性能,这一假设经常被违背。
因果推断三种分析框架 因果推断所涉及的三种分析框架:反事实框架CF、潜在结果模型POF和结构因果模型SCM潜在结果模型POF使用数学和可计算的语言对因果理论进行阐述,是一种将假设、命题和结论清晰化表达的计算模型,其在原因和结果变量已知的前提下定量分析原因变量对结果变量的因果效应,并对缺失的潜在结果进行补齐,使观察性研究的效果接近试验性研究. 结构因果模型SCM则是一种基于图论的因果推断方法,它将事件分 为观察、干预和反事实三个层级,并通过 do 运算将干预和反事实层级的因果关系都降维成可以通过统计学手段解决的问题.目前因果推断的
Causal Inference History, Perspectives, Adventures, and Unification 贝叶斯之父Pearl访谈解读 我们需要的不止于此。但是,尽管他没有表达农民想要什么的符号,费舍尔仍然说服了整个统计界,如果你随机化,你会(平均)得到农民想要的(即平均处理效果 (ATE)) .他的论点非常有说服力,以至于统计学家在没有数学证明的情况下接受了它。它确定了时变处理的影响 [Pearl 和 Robins,1995],并揭开了 Robins 的 G 公式有效的条件的神秘面纱。鲁宾的框架,被称为“潜在结果”,不同于用特定语言描述问题的结构性解释,因此,在清晰地阐明我们所知道的以及可用于推导我们希望知道的东西的数学工具方面。
The Seven Tools of Causal Inference with Reflections on Machine Learning 文章解读 这打开了推断的可能性,在温和的假设,与数据兼容的模型的集合,并紧凑地表示这个集合已经开发的系统搜索,在某些情况下,可以修剪兼容模型的集合显著到点,其中因果查询可以直接从该集合估计。对于那些"后门"准则不成立的模型,一个符号引擎是可用的,称为do-calculus,它在可行的情况下预测政策干预的效果,而当预测无法通过指定的假设确定时,就会失败【Introduction to Judea Pearl’s Do-Calculus这篇论文的主要描述了Do-calculus规则。的进步可以使编码变得紧凑。
概率论与图论基础 边缘概率是指求某个变量的概率值。上述表中指的是求 变量 I 的边缘概率,当I取定值的时候,D和G分别取不同值的时候的概率。联合概率分布:例如上表中存在三个变量,当每个变量分别取不同值的时候所对应的概率是多少?——一般采用上表中的这种枚举法!可列可加性公理:所有事件并运算的概率等于每个事件概率的和。最大后验概率是指:当I、D、G分别取什么值的时候概率值最大。随机变量是指将随机现象的一个结果,用一个变量来进行表示!概率的正则性公理是指:整个样本空间的概率为1。
人工智能的未来———因果推理:Causal Inference: What If Chapter3 OBSERVATIONAL STUDIES 文章解读 一个可能的世界是事物可能的样子。尽管可交换性条件可以被其他无法验证的条件所取代,如果愿意通过建模进行不可测试的外推,则可以放弃正则性条件,但对足够明确的治疗的要求是如此,以至于如果不同时否定描述正在估计的因果效应的可能性,就不能放弃它。反事实的可能世界表述,用描述与现实世界最小差异的最接近的可能世界的同样困难的问题代替了有时困难的指定干预的问题。一致性意味着每个接受治疗的个体的观察结果等 于她接受治疗的结果,并且每个未治疗个体的观 察结果等于她保持未治疗的结果,也就是说,对 于每个接受治疗的个体。
人工智能的未来———因果推理:Causal Inference: What If chapter2 A Randomized experiments 文章解读 由于关联是每个子集中的因果关系,因此处于危急状态的人群中特定阶层的因果风险比 Pr[Y a=1 =1|L = 1]/ Pr[Y a=0 =1|L = 1] 等于处于危急状态的人群中特定阶层的关联风险比 Pr[Y =1|L =1,A = 1]/ Pr[Y =1|L =1,A = 0]。随机实验,像任何其他现实世界的研究一样,生成反事实结果缺失值的数据。因果风险比的分子是以人群为标准的治疗中的标准化风险,在有条件的可交换性下,这种标准化风险可以解释为如果人群中的所有个体都得到治疗,就会观察到的(反事实)风险。
人工智能的未来———因果推理:Causal Inference: What If chapter1 A DEFINITION OF CAUSAL EFFECT 文章解读 因果关系关注的问题:关于因果关系的推论关注的是反事实世界中的问题,例如“如果每个人都得到治疗,会有什么风险?因果和关联的区别:关联是由个体的实际治疗值(A = 1 或 A = 0)确定的两个不相交的人群子集中的不同风险定义的,而因果关系是由同一人群中的不同风险定义的在两个不同的处理值(a = 1 或 a = 0)下。当在处理的 Pr[Y =1|A = 1] 中产生结果的个体比例等于在未处理的 Pr[Y =1|A = 0] 中产生结果的个体比例,我们说治疗 A和结果 Y 是独立的,即 A 与 Y 无关。
面向对象综述(Java篇):封装、继承、重载、重写、抽象、接口 封装的目的是为了保证变量的安全性,使用者不必在意具体实现细节,而只是通过外部接口即可访问类的成员,如果不进行封装,类中的实例变量可以直接查看和修改,可能给整个代码带来不好的影响,因此在。java当中封装主要靠访问控制权限来进行实现的!
关于访问权限控制问题 但是注意,我们创建的普通类不能是protected或是private权限,因为我们目前所使用的普通类要么就是只给当前的包内使用,要么就是给外面都用,如果是 private谁都不能用,那这个类定义出来干嘛呢?实际上Java中是有访问权限控制的,就是我们个人的隐私的一样,我不允许别人随便来查看我们的隐私,只有我们自己同意的情况下,才能告诉别人我们的名字、年龄等隐私信息。(子类我们会在下一章介绍),标记为私有的内容无法被。,标记为受保护的内容可以。,默认情况下,只能被。,标记为公共的内容,
Django后端开发:MVC 和 MTV以及动态路由、静态路由、自定义converters MVC控制器Contorller部分,由Django框架的urlconf来实现意思就是在Django框架当中,我们可以忽略对Controller的代码书写MVC: VIEWS负责业务逻辑处理+数据展示MTV: Views ——业务逻辑处理 Templates—— 数据展示Django 的路由本质上是通过正则表达式来对用户请求的Url 进行匹配 ①代表必须寻找以$字符是指以2003结尾 ^arti
如何用Socket和Wsgiref实现一个Web服务器 首先大概讲述一下,Socket创建服务器端和客户端的一个大致流程:客户端调用 socket() 函数创建套接字后,因为没有建立连接,所以套接字处于CLOSED状态;服务器端调用 listen() 函数后,套接字进入LISTEN状态,开始监听客户端请求这时客户端发起请求:1) 当客户端调用 connect() 函数后,TCP协议会组建一个数据包,并设置 SYN 标志位,表示该数据包是用来建立同步连接的。同时生成一个随机数字 1000,填充“序号(Seq)”字段,表示该数据包的序号。
Socket网络编程和工作流程 所谓套接字(Socket),就是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象。一个套接字就是网络上进程通信的一端,提供了应用层进程利用网络协议交换数据的机制。从所处的地位来讲,套接字上联应用进程,下联网络协议栈,是应用程序通过网络协议进行通信的接口,是应用程序与网络协议栈进行交互的接口