云服务器使用入门

OS 专栏收录该内容
26 篇文章 8 订阅

云服务器使用入门

学习目标

掌握云服务器使用的基本方法。

在这里插入图片描述

背景介绍

当前市场上对程序员的基本需求之一就是能够使用服务器进行开发。在绝大多数公司中,我们都会使用Centos系统(Linux发行版之一)进行开发,因为它是被验证的最稳定的企业级开发服务器。下面我们将学习一些简单的命令,来开启我们Centos学习之旅。

基本操作

假设你已经通过运维人员开通了服务器,并获得了root用户权限(在公司中,你可能得不到这么高的权限),需要在终端中输入这些命令。

使用ssh命令登陆服务器:

ssh root@XX.XX.XXX.XX
root@XX.XX.XXX.XX's password:

# 登陆后修改密码:
passwd

更改用户 root 的密码 。
新的 密码:

# 修改后重新登陆即可

查看我们当前的硬件配置:

# 查看内存
free -h

# 查看硬盘
df -h

# 查看cpu逻辑核
lscpu

输出效果:

              total        used        free      shared  buff/cache   available
Mem:           7.4G        265M        3.5G        580K        3.6G        6.8G
Swap:            0B          0B          0B


文件系统        容量  已用  可用 已用% 挂载点
devtmpfs        3.7G     0  3.7G    0% /dev
tmpfs           3.7G     0  3.7G    0% /dev/shm
tmpfs           3.7G  580K  3.7G    1% /run
tmpfs           3.7G     0  3.7G    0% /sys/fs/cgroup
/dev/vda1        99G   29G   66G   31% /
tmpfs           756M     0  756M    0% /run/user/0


Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                4
On-line CPU(s) list:   0-3
Thread(s) per core:    2
Core(s) per socket:    2
座:                 1
NUMA 节点:         1
厂商 ID:           GenuineIntel
CPU 系列:          6
型号:              85
型号名称:        Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz
步进:              7
CPU MHz:             2500.000
BogoMIPS:            5000.00
超管理器厂商:  KVM
虚拟化类型:     完全
L1d 缓存:          32K
L1i 缓存:          32K
L2 缓存:           1024K
L3 缓存:           36608K
NUMA 节点0 CPU:    0-3
Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl eagerfpu pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat avx512_vnni

查看计算环境:

cd /home/ec2-user/
vim README

你将看到所有的虚拟环境(我们必须学会使用虚拟环境,这在协作开发中非常重要)

Please use one of the following commands to start the required environment with the framework of your choice:
for MXNet(+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN) ____________________________________ source activate mxnet_p36
for MXNet(+Keras2) with Python2 (CUDA 10.1 and Intel MKL-DNN) ____________________________________ source activate mxnet_p27
for MXNet(+AWS Neuron) with Python3 ___________________________________________________ source activate aws_neuron_mxnet_p36
for TensorFlow(+Keras2) with Python3 (CUDA 10.0 and Intel MKL-DNN) __________________________ source activate tensorflow_p36
for TensorFlow(+Keras2) with Python2 (CUDA 10.0 and Intel MKL-DNN) __________________________ source activate tensorflow_p27
for TensorFlow(+AWS Neuron) with Python3 _________________________________________ source activate aws_neuron_tensorflow_p36
for TensorFlow 2(+Keras2) with Python3 (CUDA 10.1 and Intel MKL-DNN) _______________________ source activate tensorflow2_p36
for TensorFlow 2(+Keras2) with Python2 (CUDA 10.1 and Intel MKL-DNN) _______________________ source activate tensorflow2_p27
for TensorFlow 2.3 with Python3.7 (CUDA 10.2 and Intel MKL-DNN) _____________________ source activate tensorflow2_latest_p37
for PyTorch 1.4 with Python3 (CUDA 10.1 and Intel MKL) _________________________________________ source activate pytorch_p36
for PyTorch 1.4 with Python2 (CUDA 10.1 and Intel MKL) _________________________________________ source activate pytorch_p27
for PyTorch 1.6 with Python3 (CUDA 10.1 and Intel MKL) ________________________________ source activate pytorch_latest_p36
for PyTorch (+AWS Neuron) with Python3 ______________________________________________ source activate aws_neuron_pytorch_p36
for Chainer with Python2 (CUDA 10.0 and Intel iDeep) ___________________________________________ source activate chainer_p27
for Chainer with Python3 (CUDA 10.0 and Intel iDeep) ___________________________________________ source activate chainer_p36
for base Python2 (CUDA 10.0) _______________________________________________________________________ source activate python2
for base Python3 (CUDA 10.0) _______________________________________________________________________ source activate python3

如果你需要使用python3 + torch新版:

source activate pytorch_latest_p36

然后继续可以查看具体的python和pip版本:

python3 -V

# 查看pip版本
pip -V

# 查看重点的科学计算包,tensorflow,pytorch等
pip list

输出效果:

Python 3.6.10 :: Anaconda, Inc.
pip 20.0.2 from /home/ec2-user/anaconda3/envs/pytorch_latest_p36/lib/python3.6/site-packages/pip (python 3.6)

查看图数据情况:

# 开启图数据库,这里后期我们将重点学习的数据库
neo4j start

# 关闭数据库
neo4j stop

输出效果:

Active database: graph.db
Directories in use:
  home:         /var/lib/neo4j
  config:       /etc/neo4j
  logs:         /var/log/neo4j
  plugins:      /var/lib/neo4j/plugins
  import:       /var/lib/neo4j/import
  data:         /var/lib/neo4j/data
  certificates: /var/lib/neo4j/certificates
  run:          /var/run/neo4j
Starting Neo4j.
Started neo4j (pid 17565). It is available at http://0.0.0.0:7474/
There may be a short delay until the server is ready.
See /var/log/neo4j/neo4j.log for current status.

Stopping Neo4j.. stopped

运行一个使用Pytorch的程序:

cd /data

python3 pytorch_demo.py

输出效果:

Net(
  (conv1): Conv2d(1, 6, kernel_size=(3, 3), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(3, 3), stride=(1, 1))
  (fc1): Linear(in_features=576, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

其他说明

为了更好的连接海外服务器,大家可以使用finalshell进行登陆。

加油!

感谢!

努力!

  • 3
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值