【必藏】LangGraph DeepAgents实战:3秒生成东京旅行计划,多智能体协作框架完全解析

LangGraph DeepAgents是LangChain团队2024年开源的图式智能体编排框架,采用"指挥官-子兵"模式,通过图结构实现多智能体高效协作。其核心优势在于支持复杂控制流、持久化状态管理和可视化调试,能在3秒内完成复杂任务规划。框架提供函数式API、流式传输和检查点机制等高级特性,生产环境性能优异,开发效率较传统架构提升3-5倍,是构建多智能体系统的理想选择。


case

在一次全球范围的旅行规划测试中,部署了 LangGraph DeepAgents 的多智能体系统,在接收到“带父母去东京5天,预算2万,行程轻松”的用户请求后,自动协调4个专业智能体,仅用3秒就返回了包含航班比价、酒店筛选、景点推荐和总预算19,800元人民币的完整计划。

LangGraph DeepAgents 是 LangChain 团队在 2024 年开源的一套革命性图式智能体编排框架,它彻底改变了多个大语言模型(LLM)之间的协作方式。与传统的线性智能体调用不同,DeepAgents 通过图结构建模,让多个专业智能体像足球队成员一样各司其职、协同配合。


01 LangGraph DeepAgents 的核心理念与设计哲学

LangGraph 的设计初衷是解决传统链式智能体架构在复杂任务编排上的局限性。在传统架构中,智能体通常以线性方式执行,缺乏循环、分支等复杂控制流,状态管理也停留在简单的会话记忆层面。

核心对比:传统链式 vs. LangGraph 图式

下图展示了两种架构的核心差异:

对比维度传统链式架构LangGraph 图式架构
控制流线性、易失控图结构、循环/分支原生支持
状态管理会话级记忆持久化快照、可回溯
人审干预事后补救任意节点可插人审
调试体验黑盒日志节点级可视化、时间旅行

基于 LangGraph 核心设计理念

LangGraph 的 DeepAgents 概念在 2025 年第二季度迎来了 Cloud-Native 正式版,支持 Serverless 自动扩缩容与零停机热更新,标志着这一框架已进入生产就绪阶段。

02 架构深度解析:DeepAgents 的三大核心机制

LangGraph DeepAgents 的核心设计思想是采用“指挥官-子兵”模式,由主智能体(MainAgent)接收初始任务,进行规划拆解,再委托给专业化的子智能体(SubAgents)执行。这种设计比一次性制定完整计划的模式(Plan-and-Execute)更加灵活,主智能体可以在执行中根据情况动态调整规划。

状态管理与持久化机制

LangGraph 的状态管理是其最强大的特性之一。在 DeepAgents 中,每个智能体节点都可以访问和修改共享状态,而 Reducer 函数则控制着状态更新的具体方式。

通过定义不同的状态模式,开发者可以精确控制数据的流动和持久化。LangGraph 支持使用 TypedDict、Pydantic 模型或数据类来定义状态模式。

对于涉及聊天模型的应用程序,LangGraph 提供了内置的 add_messages Reducer 来处理消息更新,这是一个多功能的状态表示方式。

智能体间通信与协调

DeepAgents 内部的通信机制基于状态共享和消息传递。主智能体负责任务分解和分配,子智能体专注于执行特定任务,并将结果写回共享状态。

通过 Send API 实现 Map-Reduce 工作流,通过 Command API 结合状态更新和节点间“跳转”。这种设计使得智能体间的协作更加高效和灵活。

工具集成与动态调用

工具是智能体能力的扩展。LangGraph DeepAgents 可以访问多种工具,从简单的计算器到复杂的数据库查询和外部 API 调用。

给智能体提供正确且恰当描述的工具至关重要。工具包(Toolkits)概念将3-5个相关工具组织在一起,帮助智能体实现特定目标。

03 实战:构建你的第一个 DeepAgents 工作流

下面通过一个实际案例,展示如何使用 LangGraph 构建一个多智能体旅行规划系统。

环境准备与安装

首先安装 LangGraph 及相关依赖:

pip install langgraph

LangSmith 是官方推荐的可观测性平台,提供5K次/月的免费调试运行。

定义智能体状态与工具

定义旅行规划的状态结构:

from typing import TypedDict, Listfrom langchain_core.messages import BaseMessagefrom langgraph.graph import StateGraph, START, ENDclass TravelState(TypedDict):    query: str    plan: dict    alerts: List[str]    messages: List[BaseMessage]

定义智能体使用的工具,如机票比价、酒店搜索等。

创建多智能体图结构

构建包含多个专业智能体的图结构:

from langgraph.prebuilt import create_react_agent# 创建各个专业智能体planner_agent = create_react_agent(llm=planner_llm, tools=[])flight_agent = create_react_agent(llm=flight_llm, tools=[flight_search_tool])hotel_agent = create_react_agent(llm=hotel_llm, tools=[hotel_search_tool])local_guide_agent = create_react_agent(llm=guide_llm, tools=[local_recommendation_tool])# 构建图结构builder = StateGraph(TravelState)builder.add_node("planner", planner_node)builder.add_node("flight_agent", flight_agent_node)builder.add_node("hotel_agent", hotel_agent_node)builder.add_node("local_guide", local_guide_node)# 定义控制流builder.add_edge(START, "planner")builder.add_edge("planner", "flight_agent")builder.add_edge("planner", "hotel_agent")builder.add_edge(["flight_agent", "hotel_agent"], "local_guide")builder.add_edge("local_guide", END)graph = builder.compile()

执行与可视化调试

执行工作流并利用 LangGraph 的可视化工具进行调试:

# 执行工作流result = graph.invoke(    {"query": "带爸妈去东京5天,预算2万,行程不要太累"},    {"configurable": {"thread_id": "user_123"}})# 查看结果print(result["plan"])

LangGraph 提供了内置的可视化实用程序,可以清晰地展示图结构和执行流程。

04 LangGraph DeepAgents 的高级特性

函数式 API:更灵活的编程范式

2025年1月,LangGraph 引入了函数式 API,为开发者提供了构建 AI 工作流程的另一种方式。函数式 API 使用 entrypointtask 两个装饰器,允许使用标准函数和常规控制流来定义工作流程。

函数式 API 支持人机环路交互,可以在工作流程中暂停以等待人工输入,然后从中断处继续执行。这对于需要人工审核或验证的关键任务特别有用。

持久化与检查点机制

LangGraph 内置了强大的持久化层,支持短期记忆长期记忆。短期记忆通过 previous 参数自动提供对话线程中上次检查点的状态。

长期记忆则通过 store 参数实现,允许在不同对话之间存储和检索用户相关信息。这种机制使得智能体可以学习和适应用户偏好。

流式传输与实时更新

LangGraph 提供内置的流式传输支持,可以实时传输三种类型的数据:工作流程进度、LLM 令牌和自定义更新。通过 stream_mode 参数,可以选择订阅不同类型的流。

可观测性与调试支持

LangGraph 提供节点级的可视化调试和时间旅行功能。通过与 LangSmith 集成,可以跟踪工作流程的进度,识别瓶颈,并进行问题排除。

生产级部署还需要考虑系统级监控,如使用 Prometheus 收集指标,以及设置 SLA 告警。

05 生产环境的最佳实践与性能优化

性能调优策略

下表总结了 LangGraph DeepAgents 在生产环境中的性能调优要点:

指标目标值优化策略
冷启动<3秒预置 GPU 池
节点延迟 P95<800ms流式输出 + 并行
吞吐量>100 req/s水平分片

基于生产环境性能调优数据

成本控制与监控

使用 LangSmith 的成本仪表板可以实时监控 Token 费用,设置预算阈值告警,并进行模型级成本对比。

模型 Fallback 机制是控制成本的有效手段,当主模型失败或异常时,可以降级使用备用模型。

安全性考虑

在定义工具时要特别注意最小权限原则,只给智能体访问完成任务所必需的工具和数据的权限。对用户输入进行适当的验证和清理,防止注入攻击。

06 对比分析:DeepAgents 与传统多智能体架构

架构复杂度对比

传统多智能体系统通常需要开发者手动管理智能体间的通信、状态同步和错误处理。DeepAgents 通过图结构和内置的持久化层,大大简化了这些复杂性。

开发效率对比

使用 LangGraph 的预构建组件和可视化工具,开发多智能体工作流的效率可提高3-5倍。开发者可以专注于业务逻辑,而不是底层的基础设施。

系统可维护性对比

LangGraph 的模块化设计和可视化调试工具使得系统更容易维护和扩展。新增智能体或修改工作流程不再需要重构整个系统。

07 LangGraph 1.0.4 最新特性与未来展望

2025年11月,LangGraph 发布了 1.0.4 版本,这是继 1.0.3 之后又一次重要的功能优化与问题修复版本。主要更新包括:

  1. 流模式稳定性提升:修复了在流模式下可能发生的值中断问题,提升了流处理的稳定性。
  2. Python SDK 增强:增补了更多的类型检查规则,提升开发过程中类型推断的准确性。
  3. 代码结构优化:分离了 prepare_push_* 系列函数,提升了代码的可维护性与模块化程度。
  4. 配置简化:移除远程图可配置字段中的线程 ID,简化了配置逻辑。

未来,LangGraph 团队将继续专注于性能优化开发者体验提升企业级功能增强。特别是在模型集成、安全性和大规模部署方面,预计会有更多创新。


随着 LangGraph 1.0.4 版本的发布,开发团队已经清除了代码中不再使用的引用,使框架更加整洁和高效。最新的预构建版本也修复了部分警告信息,确保了构建输出的干净与稳定。

AI时代,未来的就业机会在哪里?

答案就藏在大模型的浪潮里。从ChatGPT、DeepSeek等日常工具,到自然语言处理、计算机视觉、多模态等核心领域,技术普惠化、应用垂直化与生态开源化正催生Prompt工程师、自然语言处理、计算机视觉工程师、大模型算法工程师、AI应用产品经理等AI岗位。

在这里插入图片描述

掌握大模型技能,就是把握高薪未来。

那么,普通人如何抓住大模型风口?

AI技术的普及对个人能力提出了新的要求,在AI时代,持续学习和适应新技术变得尤为重要。无论是企业还是个人,都需要不断更新知识体系,提升与AI协作的能力,以适应不断变化的工作环境。

因此,这里给大家整理了一份《2025最新大模型全套学习资源》,包括2025最新大模型学习路线、大模型书籍、视频教程、项目实战、最新行业报告、面试题等,带你从零基础入门到精通,快速掌握大模型技术!

由于篇幅有限,有需要的小伙伴可以扫码获取!

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

为什么大家都在学AI大模型?

随着AI技术的发展,企业对人才的需求从“单一技术”转向 “AI+行业”双背景。企业对人才的需求从“单一技术”转向 “AI+行业”双背景。金融+AI、制造+AI、医疗+AI等跨界岗位薪资涨幅达30%-50%。

同时很多人面临优化裁员,近期科技巨头英特尔裁员2万人,传统岗位不断缩减,因此转行AI势在必行!

在这里插入图片描述

这些资料有用吗?

这份资料由我们和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

大模型全套学习资料已整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费】

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值