图、图的遍历及图的拓扑排序

链表、树、图的关系

链表是特殊化的树

树是特殊化的图

  • N个点N-1条边的连通无向图——树
  • N个点N条边的连通无向图——基环树

图的存储

在这里插入图片描述
在这里插入图片描述

定义

  • 邻接矩阵O(n2): int graph[MAX_N][MAX_N];
  • 出边数组o(n+m): vector graph[MAX_N];
  • 邻接表O(n+m): struct Node { int to; Node* next; };
  •  					Node* head[MAX_N];
    

新增边(x,y)

  • 邻接矩阵: graph[x][y]= 1;
  • 出边数组:graph[x].push_back(y);
  • 邻接表: Node* node = new Node();
  •  		node->to = y;
    
  •  		node->next = head[x];
    
  •  		head[x]=node;
    

图的遍历

深度优先遍历

  • 划分连通块

广度优先遍历

  • 拓扑排序

图的深度优先遍历

在这里插入图片描述

图的广度优先遍历

在这里插入图片描述

实战

207.课程表
https://leetcode.cn/problems/course-schedule/

两种做法:

  • 深度优先遍历–找环
  • 广度优先遍历–拓扑排序
class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        to = vector<vector<int>>(numCourses, vector<int>());
        inDeg = vector<int>(numCourses, 0);
        for(vector<int>& pre : prerequisites) {
            int ai = pre[0];
            int bi = pre[1];
            to[bi].push_back(ai);
            inDeg[ai]++;
        }
        queue<int> q;
        for(int i = 0; i < numCourses; i++) {
            if(inDeg[i] == 0) q.push(i);
        }
        vector<int> lessons;
        while(!q.empty()) {
            int x = q.front();
            q.pop();
            lessons.push_back(x);
            for(int y : to[x]){
                inDeg[y]--;
                if(inDeg[y] == 0) {
                    q.push(y);
                }
            }
        }
        return lessons.size() == numCourses;
    }

private:
    vector<vector<int>> to;
    vector<int> inDeg;
};

210.课程表Ⅱ
https://leetcode.cn/problems/course-schedule-ii/

class Solution {
private:
    vector<vector<int>> edge;
    vector<int> degree;
    vector<int> ans;

public:
    vector<int> findOrder(int numCourses, vector<vector<int>>& prerequisites) {
        edge.resize(numCourses);
        degree.resize(numCourses);

        queue<int> q;
        for(auto tmp:prerequisites)
        {
            edge[tmp[1]].push_back(tmp[0]);
            degree[tmp[0]]++;
        }

        for(int i=0;i<numCourses;i++)
        {
            if(degree[i]==0)
            {
                q.push(i);
                ans.push_back(i);
            }
        }

        while(!q.empty())
        {
            int cur=q.front();
            q.pop();

            for(auto tmp:edge[cur])
            {
                degree[tmp]--;
                if(degree[tmp]==0)
                {
                    q.push(tmp);
                    ans.push_back(tmp);
                }
            }
        }

        if(ans.size()<numCourses)
        {
            return {};
        }


        return ans;
    }
};

684.冗余连接
https://leetcode.cn/problems/redundant-connection/

数据实际上是一棵基环树
深度优先遍历找环,环上删除一条边

class Solution {
public:
    vector<int> findRedundantConnection(vector<vector<int>>& edges) {
        n = 0;
        for(vector<int>& edge : edges) {
            int x = edge[0];
            int y = edge[1];
            n = max(n, max(x, y));
        }
        to = vector<vector<int>>(n + 1, vector<int>());
        visited = vector<bool>(n + 1, false);

        for(vector<int>& edge : edges) {
            int x = edge[0];
            int y = edge[1];
            to[x].push_back(y);
            to[y].push_back(x);
            hasCycle = false;
            for(int i = 1; i <= n; i++) visited[i] = false;
            dfs(x, 0);
            if(hasCycle) return edge;
        }
        return {};
    }

private:
    void dfs(int x, int fa) {
        visited[x] = true;
        for(int y : to[x]) {
            if(y == fa) continue;
            if(!visited[y]) dfs(y, x);
            else hasCycle = true;
        }
    }

    int n;
    vector<vector<int>> to;
    vector<bool> visited;
    bool hasCycle;
};

685.冗余连接Ⅱ
https://leetcode.cn/problems/redundant-connection-ii/

class Solution {
public:
    int find(int x){return parent[x]==x?x:find(parent[x]);}
    //void merge(int x,int y){ 正常并查集是需要单独一个merge函数的,但由于我们这里是树状的,可以省掉这个函数
    //    parent[x] = y;
    //}
    vector<int>parent;
    vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {
        parent.resize(edges.size()+1);
        for(int i=0;i<parent.size();i++) parent[i] = i;
        int conflict = -1;
        int cycle = -1;
        for(int i = 0;i<edges.size();i++){
            int a = edges[i][0];
            int b = edges[i][1];//此时a指向b  b要认a为父亲
            if(parent[b] != b)//冲突 b的父亲早就不是自己了
            {
                conflict = i;//找到了后一条冲突边
            }
            else
            {
                if(find(a) == find(b))//有循环,即能够查找到相同的祖先
                {
                    cycle = i;//记录出现循环的边
                }
                else parent[b] = a;//都不是的情况就让b的父节点是a
            }
        }
        //根据情况判断
        if(conflict < 0){//没有冲突边  纯循环,那么最后导致出现循环的边就是答案
            return vector<int>{edges[cycle][0],edges[cycle][1]};
        }
        else if(cycle >= 0){//有冲突边,也有循环边,那么除了冲突的的另一个父亲分支有问题
            auto c = edges[conflict];
            return vector<int>{parent[c[1]],c[1]};
        }
        else if(cycle < 0){//只有冲突边
            auto c = edges[conflict];
            return vector<int>{edges[conflict][0],edges[conflict][1]};
        }
        return {};
    }
};

推荐一个零声学院免费公开课程,个人觉得老师讲得不错,分享给大家:Linux,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK等技术内容,立即学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我也要当昏君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值