最短路基础算法

在这里插入图片描述

朴素版dijkstra

主要用于对稠密图的处理,即:m>=n2
对于稠密图,用邻接矩阵进行存储

Dijkstra求最短路 I

#include <bits/stdc++.h>
using namespace std;
const int N = 510;
int n, m;
int g[N][N]; //用邻接矩阵存储图
int dist[N]; //用来存储当前的最短距离是多少
bool st[N];  //表示当前的这个点的最短距离是不是已经被确定了
int dijkstra()
{
    memset(dist, 0x3f, sizeof(dist)); //所有距离初始化成正无穷
    dist[1] = 0;                      //第一个点的距离初始化成0
    for (int i = 0; i < n; i++)       //迭代n次
    {
        int t = -1;
        for (int j = 1; j <= n; j++) //找到距离没有被确定的点中,距离最小的点
        {
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        }
        st[t] = true;                                  //将t加入已经确定的点的集合中去
        for (int j = 1; j <= n; j++)                   //用这个点的距离更新所有点的距离
            dist[j] = min(dist[j], dist[t] + g[t][j]); //用1-j的距离加上j-k的距离更新最小值
    }
    if (dist[n] == 0x3f3f3f3f) //如果距离没有被更新过,就说明两个点之间不能联通
        return -1;
    else //否则存在最短距离,返回最短距离
        return dist[n];
}
int main()
{
    cin >> n >> m;
    memset(g, 0x3f, sizeof(g)); //距离初始化成正无穷
    for (int i = 0; i < m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        g[a][b] = min(g[a][b], c); //重边取一条最短的即可
        //自环一定不会出现在最短路中
    }
    int t = dijkstra();
    cout << t << endl;
    return 0;
}

堆优化版dijkstra

主要用于存储稀疏图,即:m<n2
对于稀疏图,用邻接表进行存储

Dijkstra求最短路 II

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII; //对于每一个点维护一个二元组,第一个元素存储距离,第二个元素存储节点编号
const int N = 1e6 + 10;
int n, m;
int h[N], e[N], ne[N], idx, w[N]; //用邻接表存储图,w数组用来存储每个边的权重
int dist[N];                      //用来存储当前的最短距离是多少
bool st[N];                       //表示当前的这个点的最短距离是不是已经被确定了
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int dijkstra()
{
    memset(dist, 0x3f, sizeof(dist));                    //所有距离初始化成正无穷
    dist[1] = 0;                                         //第一个点的距离初始化成0
    priority_queue<PII, vector<PII>, greater<PII>> heap; //用堆优化,更加快捷的找到距离的最小值
    heap.push({0, 1});
    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();
        int ver = t.second, distance = t.first;
        if (st[ver]) //如果这个点已经确定距离最小值,直接跳出
            continue;
        st[ver] = true;
        for (int i = h[ver]; i != -1; i = ne[i]) //遍历单链表,得到这个节点能到的每一个节点
        {
            int j = e[i];
            if (dist[j] > distance + w[i]) //更新这个节点的距离
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j}); //更新之后直接进队
            }
        }
    }
    if (dist[n] == 0x3f3f3f3f) //如果距离没有被更新过,就说明两个点之间不能联通
        return -1;
    else //否则存在最短距离,返回最短距离
        return dist[n];
}
int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof(h)); //距离初始化成正无穷
    for (int i = 0; i < m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c); //算法保证取出最短路,因此不需要对重边进行处理
    }
    int t = dijkstra();
    cout << t << endl;
    return 0;
}

Bellman-Ford

和Dijkstra相似,真的超级暴力
存边方式非常牛逼,随便存,可以存在结构体里面,只要能够遍历到所有边即可
在一个图中,如果有负权回路,则最短路是不一定存在的,最短路可以取向负无穷
这个算法可以求出是否存在负环,但是时间复杂度较高

当限制路径上边的数量时,只能用Bellman-Ford算法,当限制了路径上边的数量,图中是否存在 负环就无所谓了

有边数限制的最短路

#include <bits/stdc++.h>
using namespace std;
const int N = 510, M = 1e5 + 10;
struct edge
{
    int a, b, w; //用来存储每一条边,a是起点,b是终点,w是距离
} edges[M];
int m, n, k;
int dist[N];   //存储距离
int backup[N]; //用来备份,避免发生串联
int bellman_ford()
{
    memset(dist,0x3f,sizeof(dist));
    dist[1]=0;
    for (int i = 0; i < k; i++) //表示边数小于等于i的时候的最短路,如果到第n次还在迭代,说明是负环
    {
        memcpy(backup, dist, sizeof(dist)); //备份,保证每一次迭代都只用上一次迭代的结果,避免发生串联
        for (int j = 0; j < m; j++)
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            dist[b]=min(dist[b],backup[a]+w);
        }
    }
    if(dist[n]>0x3f3f3f3f/2) return -1; //注意这个写法,可能会存在两个点之间无法到达,但是可以被更新的恶心情况
    else return dist[n];
}
int main()
{
    cin >> n >> m >> k;
    for (int i = 0; i < m; i++)
    {
        int a, b, w;
        cin >> a >> b >> w;
        edges[i] = {a, b, w};
    }
    int t = bellman_ford();
    if (t == -1)
        cout << "impossible" << endl; //表示最短路不存在
    else
        cout << t << endl;
    return 0;
}

SPFA

只要求最短路的图中没有负环,就可以用SPFA算法

dist[b]=min(dist[b],backup[a]+w)只有backup[a]+w变小了,a所能到达的b才会变小。
只有一个点的距离变小,这个点后面的距离才会变小

SPFA算法就是在此处优化bellman_ford算法,和dijkstra长的很像

spfa求最短路

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, m;
int h[N], e[N], ne[N], idx, w[N]; //用邻接表存储图,w数组用来存储每个边的权重
int dist[N];                      //用来存储当前的最短距离是多少
bool st[N];                       //表示这个当前点是否在队列中
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int spfa()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    queue<int> vis;
    vis.push(1);
    st[1] = true; //表示这个点在队列中
    while (vis.size())
    {
        int t = vis.front();
        vis.pop();
        st[t] = false; //出队即更新st数组
        for (int i = h[t]; i != -1; i = ne[i]) //遍历这个点能到达的所有点
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])  //检查一下这个点的距离能不能被更新
            {
                dist[j] = dist[t] + w[i];
                if (!st[j]) //如果这个点不在队列中,就把这个点加入队列用于更新其他点
                {
                    vis.push(j);
                    st[j] = true;
                }
            }
        }
    }
    if (dist[n] == 0x3f3f3f3f)
        return -1;
    else
        return dist[n];
}
int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof(h)); //距离初始化成正无穷
    for (int i = 0; i < m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c); //算法保证取出最短路,因此不需要对重边进行处理
    }
    int t = spfa();
    if (t == -1)
        cout << "impossible" << endl;
    else
        cout << t << endl;
    return 0;
}

若要求负环,和Bellman-Ford方法相同,只需要将每个点的求得最短路时得变数存下来即可

spfa判断负环

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, m;
int h[N], e[N], ne[N], idx, w[N]; //用邻接表存储图,w数组用来存储每个边的权重
int dist[N];                      //用来存储当前的最短距离是多少
int cnt[N];                       //用来维护求得最短路时用到的边数
bool st[N];                       //表示这个当前点是否在队列中
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
int spfa()
{
    //不需要进行初始化,因为求的不是一个距离
    queue<int> vis;
    vis.push(1);
    for(int i=0;i<n;i++)
    {
        st[i+1]=true;
        vis.push(i+1);
    }
    while (vis.size())
    {
        int t = vis.front();
        vis.pop();
        st[t] = false;
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n) return true;
                if (!st[j])
                {
                    vis.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return false;
}
int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof(h)); //距离初始化成正无穷
    for (int i = 0; i < m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c); //算法保证取出最短路,因此不需要对重边进行处理
    }
    if(spfa()) cout<<"Yes"<<endl;
    else cout<<"No"<<endl;
    return 0;
}

Floyd

Floyd求最短路

#include <bits/stdc++.h>
using namespace std;
const int N = 210, INF = 1e9;
int n, m, op;
int d[N][N]; //邻接矩阵
void floyd() //直接将邻接矩阵更新成a到b的最短路
{
    for (int k = 1; k <= n; k++)
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main()
{
    cin >> n >> m >> op;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
        {
            if (i == j)
                d[i][j] = 0;
            else
                d[i][j] = INF;
        }
    while (m--)
    {
        int a, b, w;
        cin >> a >> b >> w;
        d[a][b] = min(d[a][b], w);
    }
    floyd();
    while (op--)
    {
        int a, b;
        cin >> a >> b;
        if (d[a][b] > INF / 2) //注意存在负权边的时候判定最短路可能不一样
            cout << "impossible" << endl;
        else
            cout << d[a][b] << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值