CCF计算机软件能力认证202006-1线性分类器(C语言版)

ccf-csp计算机软件能力认证202006-1线性分类器(C语言版)


题目内容:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


解题思路:

  首先思考数据的存取,对于每个点的数据因为要进行运算,所以我们通过先存后用的方法,由于包含一个字符故此处采用结构体的方法。对于每条线段,我们直接进行计算即可,所以采用边存边用的方法,通过数组每读取一条线的三个值就算出一个结果。
  注意在存取三个数时第二个数字和第三个字符之间还存在一个空格字符,故要想正确读取A和B,一定先把空格读取了,此处运用了重新赋值的方法,先把空格赋值给z,在读入字符重新赋值给z。
  第二步,思考解法。对于每一个点,我们通过直线的运算后,可以分为四类,类型为A且a+bx+cy>0(A1),类型为A且a+bx+cy<0(A0),类型为B且a+bx+cy>0(B1),类型为B且a+bx+cy<0(B0),则直线要想完美分割,只要A1+B0或A0+B1的值为n,即点的总数即可,其余情况一定没有全部分割。所以即可的到以下结果。(不知道有没有说清我的想法……哈哈)
  PS:不要把这道题想的太复杂,其实就很简单,当然不止这一种解法,还有很多,大家可以去其他地方也看看!

提交后得100分的C语言程序如下:

#include<stdio.h>
struct Node{
    int x,y;
    char z;
};
int main()
{
    int n,m,i,j,a,b,c,temp;
    int A1,A0,B1,B0;
    scanf("%d%d",&n,&m);
    struct Node s[n];
    for(i=0;i<n;i++) scanf("%d%d%c%c",&s[i].x,&s[i].y,&s[i].z,&s[i].z);//注意输入有个空格字符
    for(i=0;i<m;i++){
        scanf("%d%d%d",&a,&b,&c);//读取每条线的a,b,c
        A1=0;A0=0;B1=0;B0=0;
        for(j=0;j<n;j++){
            temp=a+b*s[j].x+c*s[j].y;
            if(temp>0&&s[j].z=='A') A1++;
            if(temp<0&&s[j].z=='A') A0++;
            if(temp>0&&s[j].z=='B') B1++;
            if(temp<0&&s[j].z=='B') B0++;
        }
        if(A1+B0==n||A0+B1==n) printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}

### CCF CSP 考试中的线性分类器实现 尽管在提供的引用中并未提及具体的线性分类器相关内容,但从机器学习的角度来看,可以推测 CCSP 可能会涉及基本的算法设计与实现。以下是关于如何在线性代数和编程框架下实现简单线性分类器的方法。 #### 线性分类器简介 线性分类器是一种基于超平面划分数据集的模型,其目标是最小化错误率或将两类样本分开。常见的线性分类器有感知机 (Perceptron),支持向量机 (SVM)线性版本以及逻辑回归 (Logistic Regression)[^4]。 #### 感知机实现 感知机是一个简单的二分类模型,通过不断调整权重来最小化误分类点的数量。其实现如下: ```python import numpy as np class Perceptron: def __init__(self, learning_rate=0.1, max_epochs=100): self.learning_rate = learning_rate self.max_epochs = max_epochs def fit(self, X, y): n_samples, n_features = X.shape self.weights = np.zeros(n_features) self.bias = 0 for _ in range(self.max_epochs): for idx, x_i in enumerate(X): linear_output = np.dot(x_i, self.weights) + self.bias predicted_class = np.where(linear_output >= 0, 1, -1) update = self.learning_rate * (y[idx] - predicted_class) self.weights += update * x_i self.bias += update def predict(self, X): linear_output = np.dot(X, self.weights) + self.bias return np.where(linear_output >= 0, 1, -1) ``` 上述代码实现了感知机的核心功能,其中 `fit` 方法用于训练模型,而 `predict` 则负责预测新数据所属类别[^5]。 #### 支持向量机(SVM)的简化版 对于更复杂的场景,可以通过优化方法求解 SVM 的对偶问题。然而,在竞赛环境中通常不需要完整的库依赖,而是关注核心思想的应用。例如,利用梯度下降法近似解决软间隔 SVM: ```python def svm_loss(w, b, X, y, C): loss = 0 dw = np.zeros_like(w) m = len(y) scores = y * (np.dot(X, w) + b) data_loss = np.maximum(0, 1 - scores) loss += np.sum(data_loss) / m reg_loss = 0.5 * np.linalg.norm(w)**2 total_loss = loss + C * reg_loss dscores = -(scores < 1).astype(float) * y / m dw += np.dot(dscores.T, X) db = np.sum(dscores) return total_loss, dw, db ``` 此函数计算损失并返回梯度更新方向[^6]。 --- ####
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值