matlab中的一些函数:classify、montage---ChatGPT4o作答+mathworks官方文档

MATLAB 中的 classify 函数用于对输入数据进行分类预测,适用于图像、序列或特征数据,基于已训练好的深度神经网络。尽管该函数目前不再推荐使用(从 R2024a 起),它依然广泛存在于旧版模型和项目中,并被用于通过 SeriesNetworkDAGNetwork 对象对数据进行快速推理。


一、函数用途概述

Y = classify(net, data)
[Y, scores] = classify(___)
  • net:已训练的网络对象(SeriesNetworkDAGNetwork)。
  • data:图像(如 imageDatastore)、序列或特征数据。
  • Y:分类预测结果(分类向量或元胞数组)。
  • scores:每一类的预测概率得分。

二、推荐替代方案(R2024a 起)

为了更好的性能与灵活性,推荐使用:

scores = minibatchpredict(net, data);
Y = scores2label(scores, classNames);

适用于 dlnetwork 对象,并支持更多网络结构和自定义功能。


三、典型用法示例

1. 图像分类(使用预训练网络)
net = squeezenet;
img = imread('peppers.png');
img = imresize(img, net.Layers(1).InputSize(1:2));
Y = classify(net, img);
2. 批量图像分类
imds = imageDatastore('images', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
Y = classify(net, imds);
3. 获取分类得分(softmax 概率)
[Y, scores] = classify(net, img);
bar(scores)
4. 序列分类
Y = classify(net, sequenceData);

四、输入类型支持

  • 图像数据numeric arrayimageDatastoreaugmentedImageDatastore
  • 序列数据cell arraynumeric array(适用于 LSTM、GRU)。
  • 特征数据tablenumeric array
  • 多输入网络X1, X2, ..., XNCombinedDatastore

五、常用参数(Name-Value)

参数说明
MiniBatchSize每次推理处理的样本数(默认 128)
ExecutionEnvironment"auto""gpu""cpu"
SequenceLength用于序列填充方式:"longest""shortest"、定长
SequencePaddingValue用于序列填充的默认值(如 0)
SequencePaddingDirection"left""right"

六、输出解释

  • Y:预测的分类结果。

    • 图像/特征分类:N×1 分类向量。
    • 序列分类:“序列到序列”返回元胞数组。
  • scores:对应每个类别的概率,或得分矩阵。

    • 图像/特征分类:N×K 矩阵(N 个样本,K 个类)。
    • 序列分类:cell 数组(每个元素为 T×K)。

七、替代 classify 的优势(dlnetwork

  • 更灵活的训练和预测(支持动态图)。
  • 支持多输出网络和定制损失函数。
  • trainnet 配合使用更高效。
  • 示例:
scores = minibatchpredict(dlnet, XTest);
Y = scores2label(scores, classNames);

八、总结

特性classify推荐替代方案
支持模型SeriesNetwork / DAGNetworkdlnetwork
推理能力固定结构支持动态图、自定义输出
分类方法一步返回分类结果返回得分后自行解码
状态已不推荐使用推荐

如你有现成的 trainNetwork 训练的模型,还可以用 dag2dlnetwork 进行转换:

dlnet = dag2dlnetwork(net);

MATLAB 中的 montage 函数用于显示多张图像的拼接画面,即将多张图像组合成一个矩形拼图。这个函数支持多种输入类型,如图像、图像数据存储、彩色图像和灰度图像等。

主要功能:

  • 基本语法

    montage(imagelist)
    montage(imds)
    montage(I)
    montage(imagelist, map)
    montage(___, Name=Value)
    
  • 参数说明

    • imagelist:图像列表,通常是一个包含图像的单元格数组或文件路径的字符串数组。
    • imds:图像数据存储对象(ImageDatastore),用于从磁盘加载图像。
    • I:多帧图像,通常是一个 3D 数组,表示多张图像(例如,多个图像帧)。
    • map:对于灰度或二值图像,map 用于指定图像的颜色映射(colormap)。
    • Name=Value:使用名称-值对参数来定制显示效果,如设置背景颜色、调整边框大小等。

输入示例:

  1. 显示不同类型和大小的图像

    imRGB = imread("peppers.png");
    imGray = imread("coins.png");
    montage({imRGB, imGray, "cameraman.tif"})
    
  2. 从图像数据存储中创建拼图

    fileFolder = fullfile(matlabroot,"toolbox","images","imdata");
    imds = imageDatastore(fullfile(fileFolder,"AT3*"));
    montage(imds)
    
  3. 创建多帧图像拼图(例如MRI数据集)

    load mristack
    montage(mristack)
    
  4. 从图像文件创建拼图

    fileNames = ["image1.jpg", "image2.jpg", "image3.jpg"];
    montage(fileNames, "Size", [2, 2])  % 将图像排列为 2 行 2 列
    

可选的名称-值参数:

  • BackgroundColor:设置背景颜色,默认为黑色。可以使用 RGB 三元组或颜色名称(如 'red', 'blue')。
  • BorderSize:每个图像的边框大小,以像素为单位。
  • DisplayRange:设置灰度图像的显示范围,指定最小和最大像素值的范围。
  • Indices:指定要显示的图像帧或索引。
  • Interpolation:设置插值方法,"nearest""bilinear",用于调整图像大小时的插值方式。
  • ThumbnailSize:指定每个缩略图的大小。

输出:

  • img:返回一个图像对象,表示拼接后的图像。

常见应用:

  • 医学图像处理:查看 MRI 数据的不同切片。
  • 视频数据:查看视频的各个帧。
  • 图像集的快速查看:查看图像数据集的不同图像或创建样本数据集的拼图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值