机器学习算法(一):基于逻辑回归的分类预测

一、逻辑回归
1.逻辑回归(LR)是一个分类模型,并且广泛应用于各个领域。
2.特点:模型简单、模型的可解释性强;
3.优点:实现简单,易于理解和实现;计算代价不高,速度快,存储资源低;
缺点:容易欠拟合,分类精度不高;
4.应用:机器学习、大多数医学领域和社会科学。
二、案例学习引入
#基础函数库
import numpy as np
#导入画图库
import matplotlib.pyplot as plt
import seaborn as sns
#导入逻辑回归模型函数
from sklearn.linear_model import LogisticRegression

#构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 0, 0, 1, 1, 1])
#调用逻辑回归模型
lr_clf = LogisticRegression()
#用逻辑回归模型拟合构造的数据集
lr_clf = lr_clf.fit(x_fearures, y_label) #其拟合方程为 y=w0+w1x1+w2x2
#查看其对应模型的w
print(‘the weight of Logistic Regression:’,lr_clf.coef_)
#查看其对应模型的w0
print(‘the intercept(w0) of Logistic Regression:’,lr_clf.intercept_)

#可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap=‘viridis’)
plt.title(‘Dataset’)
plt.show()

#可视化决策边界
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap=‘viridis’)
plt.title(‘Dataset’)

nx, ny = 200, 100
x_min, x_max = plt.xlim()
y_min, y_max = plt.ylim()
x_grid, y_grid = np.meshgrid(np.linspace(x_min, x_max, nx),np.linspace(y_min, y_max, ny))

z_proba = lr_clf.predict_proba(np.c_[x_grid.ravel(), y_grid.ravel()])
z_proba = z_proba[:, 1].reshape(x_grid.shape)
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors=‘blue’)
plt.show()

#可视化预测新样本
plt.figure()
#new 1
x_fearures_new1 = np.array([[0, -1]])
plt.scatter(x_fearures_new1[:,0],x_fearures_new1[:,1], s=50, cmap=‘viridis’)
plt.annotate(s=‘New point 1’,xy=(0,-1),xytext=(-2,0),color=‘blue’,arrowprops=dict(arrowstyle=’-|>’,connectionstyle=‘arc3’,color=‘red’))

#new 2
x_fearures_new2 = np.array([[1, 2]])
plt.scatter(x_fearures_new2[:,0],x_fearures_new2[:,1], s=50, cmap=‘viridis’)
plt.annotate(s=‘New point 2’,xy=(1,2),xytext=(-1.5,2.5),color=‘red’,arrowprops=dict(arrowstyle=’-|>’,connectionstyle=‘arc3’,color=‘red’))

#训练样本
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap=‘viridis’)
plt.title(‘Dataset’)

#可视化决策边界
plt.contour(x_grid, y_grid, z_proba, [0.5], linewidths=2., colors=‘blue’)

plt.show()

#在训练集和测试集上分别利用训练好的模型进行预测
y_label_new1_predict = lr_clf.predict(x_fearures_new1)
y_label_new2_predict = lr_clf.predict(x_fearures_new2)

print(‘The New point 1 predict class:\n’,y_label_new1_predict)
print(‘The New point 2 predict class:\n’,y_label_new2_predict)

#由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所以我们可以利用 predict_proba 函数预测其概率
y_label_new1_predict_proba = lr_clf.predict_proba(x_fearures_new1)
y_label_new2_predict_proba = lr_clf.predict_proba(x_fearures_new2)

print(‘The New point 1 predict Probability of each class:\n’,y_label_new1_predict_proba)
print(‘The New point 2 predict Probability of each class:\n’,y_label_new2_predict_proba)

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页