PyTorch学习之 torch.repeat 函数

PyTorch学习之 torch.repeat 函数

一、简介

torch.repeat 的主要作用是重复张量的内容,从而创建一个新的张量。

repeat 会创建一个全新的张量,并将输入张量的内容按指定次数进行复制,因此会占用更多的内存

二、基本语法

torch.repeat(*sizes)

三、参数说明

  • *sizes (int…): 指定每个维度的重复次数。长度必须与输入张量的维度数一致。
  • 例如,张量的形状为(2,3,4),那么*sizes必须写成x,x,x的形式,即保证维度数相同。

三、返回值

返回一个新的张量,其中包含重复的内容。新张量的形状是通过将原始张量的每个维度按指定的次数进行重复后得到的。

四、示例

以下是一些使用 torch.repeat 的示例,以帮助更好地理解其用法。

示例 1: 重复张量的所有维度
import torch

# 创建一个形状为 (2, 2) 的张量
x = torch.tensor([[1, 2], [3, 4]])
print("原始张量:\n", x)

# 重复每个维度2次
y = x.repeat(2, 2)
print("重复后的张量:\n", y)

输出:

原始张量:
 tensor([[1, 2],
        [3, 4]])
重复后的张量:
 tensor([[1, 2, 1, 2],
        [3, 4, 3, 4],
        [1, 2, 1, 2],
        [3, 4, 3, 4]])
示例 2: 选择性重复某些维度
import torch

# 创建一个形状为 (2, 1, 2) 的张量
x = torch.tensor([[[1, 2]], [[3, 4]]])
print("原始张量:\n", x)

# 只重复第0维和第1维
y = x.repeat(2, 3, 1)
print("选择性重复后的张量:\n", y)

输出:

原始张量:
 tensor([[[1, 2]],
        [[3, 4]]])
选择性重复后的张量:
 tensor([[[1, 2],
          [1, 2],
          [1, 2]],

         [[3, 4],
          [3, 4],
          [3, 4]],

         [[1, 2],
          [1, 2],
          [1, 2]],

         [[3, 4],
          [3, 4],
          [3, 4]]])
示例 3: 仅重复特定维度
import torch

# 创建一个形状为 (2, 3) 的张量
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print("原始张量:\n", x)

# 只重复第1维
y = x.repeat(1, 2)
print("仅重复特定维度后的张量:\n", y)

输出:

原始张量:
 tensor([[1, 2, 3],
        [4, 5, 6]])
仅重复特定维度后的张量:
 tensor([[1, 2, 3, 1, 2, 3],
        [4, 5, 6, 4, 5, 6]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>