给定一个长度为 nnn 的正整数数组 a1,a2,…,ana_1,a_2,…,a_na1,a2,…,an。
你需要选择其中一个元素,将其移动至数组中的任意位置(也可以留在原位置)。
我们的目标是,在移动元素操作完成以后,将数组分为前后两个非空部分,并使前一部分的各元素之和等于后一部分的各元素之和。
请问,该目标能否达成?
输入格式
第一行包含整数 TTT,表示共有 TTT 组测试数据。
每组数据第一行包含整数 nnn。
第二行包含 nnn 个整数 a1,a2,…,ana_1,a_2,…,a_na1,a2,…,an。
输出格式
每组数据输出一行结果,目标可以达成,则输出 YES,否则输出 NO。
数据范围
1≤T≤20,1≤T≤20,1≤T≤20,
1≤n≤105,1≤n≤10^5,1≤n≤105,
1≤ai≤1091≤a_i≤10^91≤ai≤109。
同一测试点内所有 nnn 的和不超过 10510^5105。
输入样例:
3
3
1 3 2
5
1 2 3 4 5
5
2 2 3 4 5
输出样例:
YES
NO
YES
分类讨论
- 要移动的元素的原位置与目的位置都在分割线一边
则直接找到 S/2S/2S/2 - 要移动的元素的原位置与目的位置在分割线的两边
则算出前缀和与后缀和
有 s[i]−a[k]=S/2s[i] - a[k] = S / 2s[i]−a[k]=S/2
a[k]=s[i]−S/2a[k] = s[i] - S / 2a[k]=s[i]−S/2
枚举 iii 判断 aka_kak 是否在 a[1a[1a[1 ~ i]i]i] 中 存在
#include<iostream>
#include<unordered_set>
using namespace std;
typedef long long LL;
const int N = 100010;
int n;
int a[N], b[N];
LL s[N];
bool check(int w[]){
for(int i = 1; i <= n; i++) s[i] = s[i-1] + w[i];
if(s[n] % 2) return false;
unordered_set<LL> S;
S.insert(0);
for(int i = 1; i <= n; i++){
S.insert(w[i]);
if(S.count(s[i] - s[n] / 2)) return true;
}
return false;
}
int main(){
int t;
scanf("%d", &t);
while(t--){
scanf("%d", &n);
for(int i = 1; i <= n; i++){
scanf("%d", &a[i]);
b[n-i+1] = a[i];
}
if(check(a) || check(b)) puts("YES");
else puts("NO");
}
return 0;
}

被折叠的 条评论
为什么被折叠?



