okey.king.cn
码龄5年
关注
提问 私信
  • 博客:12,843
    动态:5
    12,848
    总访问量
  • 10
    原创
  • 113,363
    排名
  • 13
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2020-03-09
博客简介:

qq_46519070的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    2
    当前总分
    187
    当月
    2
个人成就
  • 获得18次点赞
  • 内容获得5次评论
  • 获得40次收藏
创作历程
  • 2篇
    2024年
  • 5篇
    2022年
  • 3篇
    2021年
成就勋章
TA的专栏
  • 计算机视觉
    2篇
  • yolo系列
    5篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    opencv机器学习人工智能智慧城市视觉检测
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SPDConv模块

它通过替代传统的步长卷积(strided convolution)和池化操作,减少了信息的丢失,并增强了对重要细节的提取,从而提高了模型在处理小目标和低分辨率图像时的性能。SPD层的作用是将特征图的空间维度转换为深度维度,从而在不丢失信息的情况下降采样特征图。在实际应用中,SPDConv可以很容易地集成到现有的CNN架构中,如YOLOv5和ResNet,以提升它们在特定任务上的性能。总的来说,SPDConv是一个有前景的技术,它通过创新的方法改善了CNN在处理具有挑战性的图像识别任务时的性能。
原创
发布博客 2024.09.24 ·
374 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

计算机视觉注意力汇总(待续)

其中 x为前一部分的特征图,tr为Conv ,可以将特征图conv到C2通道的特征图,sq为全局pooling层(Avg,Mean),将特征图压到11c2(即为改变特征图的权重的w),scale可以认为是点积运算。
原创
发布博客 2024.09.22 ·
402 阅读 ·
5 点赞 ·
0 评论 ·
12 收藏

yolov3详细讲解

yolov3
原创
发布博客 2022.07.19 ·
789 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

YOLOv5 Tensorrt 部署 Python/C++

yolov5 tensorrt部署
原创
发布博客 2022.07.13 ·
1451 阅读 ·
2 点赞 ·
4 评论 ·
8 收藏

yolov2详细讲解

yolov2
原创
发布博客 2022.07.13 ·
3057 阅读 ·
2 点赞 ·
0 评论 ·
13 收藏

yolov1详细讲解

整体来看,Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测
原创
发布博客 2022.07.04 ·
836 阅读 ·
3 点赞 ·
0 评论 ·
1 收藏

jarjar ---hadoop

发布资源 2022.04.14 ·
rar

动物式产生推理系统

动物式产生推理系统产生式系统把一组领域相关的产生式(或称规则)放在一起,让它们互相配合、协同动作,一个产生式生成的结论一般可供另一个(或一些)产生式作为前提或前提的一部分来使用,以这种方式求得问题之解决,这样的一组产生式被称为产生式系统产生式系统的构成规则每条规则分为左部(或称前提、前件)和右部(或称结论、动作、后件)。通常左部表示条件,核查左部条件是否得到满足一般采用匹配方第 3 页法,即查看数据基DB(Data Base)中是否存在左部所指明的情况,若存在则认为匹配成功,否则认为匹配失败。一
原创
发布博客 2022.03.23 ·
2088 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

这

发布动态 2022.03.08

opencv02

'''#上帝视角img=cv2.imread('opencv/strack/hh.jpg')img=cv2.resize(img,(200,400))w,h=100,200k1=np.float32([[80,70],[80,159],[150,70],[150,150]])#原图像的某区域k2=np.float32([[0,0],[0,w],[h,0],[h,w]])img1=cv2.getPerspectiveTransform(k1,k2)img=cv2.warpPerspective
原创
发布博客 2021.11.13 ·
87 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

opencv01

import cv2from matplotlib import pyplot as pltimport numpy as np'''#读图片与展示图片img1=cv2.imread('cat.png')#读原始图片img2=cv2.imread('cat.png',cv2.IMREAD_GRAYSCALE)#读原始图片并同时改为灰度图img1=cv2.cvtColor(img1,cv2.COLOR_BGR2HSV)#改图像色彩函数'''# cv2.COLOR_BGR2HSV 不同颜色的阈
原创
发布博客 2021.11.13 ·
3413 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

2021-10-06

ACM集训 --格式化输出Python 字符串的格式化输出1.进制转换 %o —— oct 八进制 %d —— dec 十进制 %x —— hex 十六进制 代码s="十进制:%d"%(123)s="八进制:%o"%(123)s="十六进制:%x"%(123)运行结果2. 浮点数输出%f ——保留小数点后面六位有效数字 %.f ——保留整数部分      %.3f,保留3位小数位 %e ——保留小数点后面六位有效数字,
原创
发布博客 2021.10.06 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏