
SPDConv模块
它通过替代传统的步长卷积(strided convolution)和池化操作,减少了信息的丢失,并增强了对重要细节的提取,从而提高了模型在处理小目标和低分辨率图像时的性能。SPD层的作用是将特征图的空间维度转换为深度维度,从而在不丢失信息的情况下降采样特征图。在实际应用中,SPDConv可以很容易地集成到现有的CNN架构中,如YOLOv5和ResNet,以提升它们在特定任务上的性能。总的来说,SPDConv是一个有前景的技术,它通过创新的方法改善了CNN在处理具有挑战性的图像识别任务时的性能。










