LightRAG复现

LightRAG环境搭建与运行示例
  1. 安装Anaconda、pytorch

  2. 安装LightRAG
    创建一个新的conda环境:
    conda create -n LightRAG python=3.10
    conda activate LightRAG
    git clone https://github.com/HKUDS/LightRAG.git
    安装LightRAG,推荐源码安装:
    cd LightRAG
    pip install -e .
    安装ollama,可以使用修改后的安装脚本以加快速度:
    curl -fsSL https://ollama.com/install.sh -o ollama_install.sh
    chmod +x ollama_install.sh
    ./ollama_install.sh

准备demo数据:
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt

修改源码:
./examples/lightrag_ollama_demo.py

import os
import logging
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_model_complete, ollama_embedding
from lightrag.utils import EmbeddingFunc

WORKING_DIR = "./dickens"
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)

rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=ollama_model_complete,
    llm_model_name="qwen2",
    llm_model_max_async=4,
    llm_model_max_token_size=32768,
    llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 32768}},
    embedding_func=EmbeddingFunc(
        embedding_dim=768,
        max_token_size=8192,
        func=lambda texts: ollama_embedding(
            texts, embed_model="nomic-embed-text", host="http://localhost:11434"
        ),
    ),
)

with open("./book.txt", "r", encoding="utf-8") as f:
    rag.insert(f.read())

# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))

确保llm_model_name设置为你使用的模型名称,例如qwen2

  1. 运行结果
    python examples/lightrag_ollama_demo.py

参考:https://blog.csdn.net/wshzd/article/details/143157062

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值