【人工智能之手写字体识别】机器学习及与智能数据处理之降维算法PCA及其应用手写字体识别

降维算法PCA及其应用

利用PCA算法实现手写字体识别,要求:

1、实现手写数字数据集的降维;

2、比较两个模型(64维和10维)的准确率;

3、对两个模型分别进行10次10折交叉验证,绘制评分对比曲线。

实验步骤

1. 导入数据集

from sklearn.datasets import load_digits
digits = load_digits()
train = digits.data
target = digits.target

2. 实现手写数字数据集的降维;

pca = PCA(n_components=10,whiten=True)
pca.fit(x_train,y_train)
x_train_pca = pca.transform(x_train)
x_test_pca = pca.transform(x_test)

3. 比较两个模型(64维和10维)的准确率;

64维

svc = SVC(kernel = 'rbf')
svc.fit(x_train,y_train)
y_predict = svc.predict(x_test)
print('The Accuracy of SVC is', svc.score(x_test, y_test))
print("classification report of SVC\n",classification_report(y_test, y_predict,
target_names=digits.target_names.astype(str)))

10维

svc 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南蓬幽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值