文章目录
降维算法PCA及其应用
利用PCA算法实现手写字体识别,要求:
1、实现手写数字数据集的降维;
2、比较两个模型(64维和10维)的准确率;
3、对两个模型分别进行10次10折交叉验证,绘制评分对比曲线。
实验步骤
1. 导入数据集
from sklearn.datasets import load_digits
digits = load_digits()
train = digits.data
target = digits.target
2. 实现手写数字数据集的降维;
pca = PCA(n_components=10,whiten=True)
pca.fit(x_train,y_train)
x_train_pca = pca.transform(x_train)
x_test_pca = pca.transform(x_test)
3. 比较两个模型(64维和10维)的准确率;
64维
svc = SVC(kernel = 'rbf')
svc.fit(x_train,y_train)
y_predict = svc.predict(x_test)
print('The Accuracy of SVC is', svc.score(x_test, y_test))
print("classification report of SVC\n",classification_report(y_test, y_predict,
target_names=digits.target_names.astype(str)))
10维
svc

最低0.47元/天 解锁文章
1798

被折叠的 条评论
为什么被折叠?



