xor序列-线性基模板

https://ac.nowcoder.com/acm/problem/17968

Problem

给出n个数,q次询问,问x和这n个数中的任意多个数异或是否能够得到y

Solution

线性基模板。线性基请看这位大佬博客:https://blog.csdn.net/a_forever_dream/article/details/83654397

首先要知道线性基的概念:线性基是一个数组,该数组由原序列构造而来,原序列中的每一个数都能由线性基中的若干个数异或而来。

线性基的构造:

bool insert(int x,int k){
    for(int i = 60; i >= 0; i--){
        if(x&((1ll*1)<<i)){
            if(d[i]) x ^= d[i];
            else{
                if(k == 2) return false;
                d[i] = x;
                break;
            }
        }
    }
    return x == 0;
}

这题要构造x^a^b^c... = y

等价于 a^b^c...=y^x

所以先预处理出原序列的线性基,再看能否得到y^x.判断方法就是看y^x能否插入线性基中。

Code

#include <bits/stdc++.h>
#define ll long long
const int N = 1e6+7;
const int mod = 1e9+7;
const ll ds = 1e15;
const double eps = 1e-8;

using namespace std;

int a[N],d[105];
bool insert(int x,int k){
    for(int i = 60; i >= 0; i--){
        if(x&((1ll*1)<<i)){
            if(d[i]) x ^= d[i];
            else{
                if(k == 2) return false;
                d[i] = x;
                break;
            }
        }
    }
    return x == 0;
}

void solve(){
    int n,q,x,y,g;
    bool flag;
    cin >> n;
    for(int i = 1; i <= n; i++){
        cin >> x;
        flag = insert(x,1);
    }
    flag = true;
    cin >> q;
    while(q--){
       cin >> x >> y;
       flag = insert(x^y,2);
       if(!flag) puts("NO");
       else puts("YES");
    }
}
int main(){
    // int t;
    // cin >> t;
    // while(t--)
        solve();
    //system("pause");
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值