【LeetCode刷题-哈希】--380.O(1) 时间插入、删除和获取随机元素

380.O(1) 时间插入、删除和获取随机元素

image-20231102094349107

方法一:变长数组+哈希表

image-20231102094429740

class RandomizedSet {
    private Map<Integer,Integer> indices;
    private List<Integer> nums;
    private Random random;

    public RandomizedSet() {
        nums = new ArrayList<Integer>();
        indices = new HashMap<Integer, Integer>();
        random = new Random();
    }

    public boolean insert(int val) {
        if (indices.containsKey(val)) {
            return false;
        }
        int index = nums.size();
        nums.add(val);
        indices.put(val, index);
        return true;
    }

    public boolean remove(int val) {
        if (!indices.containsKey(val)) {
            return false;
        }
        int index = indices.get(val);
        int last = nums.get(nums.size() - 1);
        nums.set(index, last);
        indices.put(last, index);
        nums.remove(nums.size() - 1);
        indices.remove(val);
        return true;
    }

    public int getRandom() {
        int randomIndex = random.nextInt(nums.size());
        return nums.get(randomIndex);
    }
}

/**
 * Your RandomizedSet object will be instantiated and called as such:
 * RandomizedSet obj = new RandomizedSet();
 * boolean param_1 = obj.insert(val);
 * boolean param_2 = obj.remove(val);
 * int param_3 = obj.getRandom();
 */
### LeetCode入门与基础知识 对于初学者而言,在LeetCode的主要目的是通过实际操作来巩固加深对数据结构算法的理解[^1]。因此,了解一些基础概念以及合理的学习路径是非常重要的。 #### 数据结构基础 以下是几种常见的数据结构及其应用场景: - **数组 (Array)** 数组是最简单的线性数据结构之一,支持随机访问元素。它适用于需要频繁读取固定位置元素的场景[^2]。 - **链表 (Linked List)** 链表是一种动态分配内存的数据结构,适合于频繁插入删除节点的操作。单向链表、双向链表循环链表是其常见变体。 - **栈 (Stack)** **队列 (Queue)** 栈遵循后进先出(LIFO)原则,常用于括号匹配等问;队列则采用先进先出(FIFO),可用于广度优先搜索(BFS)- **哈希(Hash Table)** 哈希表提供快速查找功能,时间复杂度通常为O(1)。它是解决两数之(Two Sum)这类问的核心工具。 - **树 (Tree)** 包括二叉树、平衡树(如AVL树)、红黑树(Red-Black Tree)、B/B+树等。它们广泛应用于文件系统索引、数据库查询优化等领域。 - **Trie树 (Prefix Tree)** Trie树特别擅长处理字符串前缀相关的问,例如字典单词检索或自动补全功能实现。 #### 算法初步 除了熟悉上述各种数据结构外,还需掌握若干经典算法- 排序算法:冒泡排序、选择排序、插入排序属于简单但效率较低的方法;而快速排序(Quick Sort)、归并排序(Merge Sort)则是更高效的替代方案。 ```python def quick_sort(arr): if len(arr) <= 1: return arr else: pivot = arr[len(arr)//2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left)+middle+quick_sort(right) ``` - 查找算法:二分查找(Binary Search)是在有序列表中高效定位目标项的有效手段。 - 动态规划(Dynamic Programming, DP): 解决最优化问的强大技术,核心在于状态转移方程的设计。 #### 学习策略 制定合理的计划有助于提高学习效果: - 结合理论知识与实战练习同步推进; - 定期回顾已学内容以强化记忆; - 参考高质量资料如《LeetCode开源手册》获取更多技巧[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值