《昇思25天学习打卡营第5天|数据变换Transforms》

基本介绍&快速入门&张量Tensor&数据集Dataset&数据变换Transforms&网络构建&函数式自动微分&模型训练&保存与加载&使用静态图加速


数据变换 Transforms

一般情况下,直接加载的原始数据并不能直接放到神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同数据类型的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。

mindspore.dataset提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持Lambda函数。

Common Transforms

此模块用于通用数据增强,其中一部分增强操作是用C++实现的,具有较好的高性能,另一部分是基于Python实现,使用了NumPy模块作为支持。

Compose

Compose将多个数据增强操作组合使用。接收一个数据增强操作序列,然后将其组合成单个数据增强操作。基于Mnist数据集呈现Transforms的应用效果。

from download import download
from mindspore.dataset import MnistDataset, transforms, vision

# 下载数据并加载
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

train_dataset = MnistDataset('MNIST_Data/train')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)

# 缩放数据,并标准化
composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)
train_dataset = train_dataset.map(composed, 'image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)

输出:

Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)

file_sizes: 100%|███████████████████████████| 10.8M/10.8M [00:00<00:00, 135MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./
(28, 28, 1)
(1, 28, 28)

Vision Transforms

mindspore.dataset.vision模块提供一系列针对图像数据的Transforms。在Mnist数据处理过程中,使用了RescaleNormalizeHWC2CHW变换。

Rescale

Rescale变换用于调整图像像素值的大小,包括两个参数:

  • rescale:缩放因子。
  • shift:平移因子。

图像的每个像素将根据这两个参数进行调整,输出的像素值为 o u t p u t i = i n p u t i ∗ r e s c a l e + s h i f t output_{i} = input_{i} * rescale + shift outputi=inputirescale+shift

这里我们先使用numpy随机生成一个像素值在[0, 255]的图像,将其像素值进行缩放。

import numpy as np
from PIL import Image
random_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)
print(random_np)

输出:

[[198 166 131 ...  82 196 206]
 [ 24 152 148 ... 117  27  56]
 [ 90  63 238 ... 111  94  76]
 ...
 [ 86 151 220 ...  83   3 236]
 [ 26 201  63 ... 245  23  27]
 [168  58 251 ...  59 162 161]]

为了更直观地呈现Transform前后的数据对比,使用Transforms的Eager模式进行演示。首先实例化Transform对象,然后调用对象进行数据处理。

rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)
print(rescaled_image)

输出:

[[0.77647066 0.6509804  0.5137255  ... 0.32156864 0.7686275  0.8078432 ]
 [0.09411766 0.59607846 0.5803922  ... 0.45882356 0.10588236 0.21960786]
 [0.3529412  0.24705884 0.9333334  ... 0.43529415 0.36862746 0.29803923]
 ...
 [0.3372549  0.5921569  0.86274517 ... 0.3254902  0.01176471 0.92549026]
 [0.10196079 0.78823537 0.24705884 ... 0.9607844  0.09019608 0.10588236]
 [0.65882355 0.227451   0.9843138  ... 0.23137257 0.63529414 0.6313726 ]]

可以看到,使用Rescale后的每个像素值都进行了缩放。

Normalize

Normalize变换用于对输入图像的归一化,包括三个参数:

  • mean:图像每个通道的均值。
  • std:图像每个通道的标准差。
  • is_hwc:bool值,输入图像的格式。True为(height, width, channel),False为(channel, height, width)。

图像的每个通道将根据meanstd进行调整,计算公式为 o u t p u t c = i n p u t c − m e a n c s t d c output_{c} = \frac{input_{c} - mean_{c}}{std_{c}} outputc=stdcinputcmeanc,其中 c c c代表通道索引。

normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))
normalized_image = normalize(rescaled_image)
print(normalized_image)

输出:

[[ 2.0959775   1.688674    1.2431858  ...  0.61950225  2.070521    2.1978035 ]
 [-0.11873532  1.5104787   1.4595658  ...  1.0649905  -0.08055063  0.28856817]
 [ 0.7213281   0.37766582  2.6051068  ...  0.9886211   0.77224106  0.54313284]
 ...
 [ 0.67041516  1.4977505   2.3759987  ...  0.63223046 -0.38602826  2.5796504 ]
 [-0.09327886  2.1341622   0.37766582 ...  2.6942046  -0.13146357  -0.08055063]
 [ 1.7141304   0.31402466  2.7705739  ...  0.32675287  1.637761    1.6250328 ]]

为什么要标准化或归一化?

  • 加速模型收敛和训练过程
  • 提高模型的稳定性,未归一化可能导致模型梯度爆炸或者梯度消失
  • 减少模型过拟合,统一数据可以减少模型对输入数据随机变化的敏感度

HWC2CHW

HWC2CHW变换用于转换图像格式。在不同的硬件设备中可能会对(height, width, channel)或(channel, height, width)两种不同格式有针对性优化。MindSpore设置HWC为默认图像格式,在有CHW格式需求时,可使用该变换进行处理。

这里我们先将前文中normalized_image处理为HWC格式,然后进行转换。可以看到转换前后的shape发生了变化。

hwc_image = np.expand_dims(normalized_image, -1)
hwc2chw = vision.HWC2CHW()
chw_image = hwc2chw(hwc_image)
print(hwc_image.shape, chw_image.shape)

输出:

(48, 48, 1) (1, 48, 48)

更多Vision Transforms详见mindspore.dataset.vision

Text Transforms

mindspore.dataset.text模块提供一系列针对文本数据的Transforms。与图像数据不同,文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。这里简单介绍其使用方法。

先定义三段文本,作为待处理的数据,并使用GeneratorDataset进行加载。

from mindspore.dataset import GeneratorDataset
texts = ['Welcome to Beijing']
test_dataset = GeneratorDataset(texts, 'text')

PythonTokenizer

分词(Tokenize)操作是文本数据的基础处理方法,MindSpore提供多种不同的Tokenizer。这里我们选择基础的PythonTokenizer举例,此Tokenizer允许用户自由实现分词策略。随后我们利用map操作将此分词器应用到输入的文本中,对其进行分词。

from mindspore.dataset import text
def my_tokenizer(content):
    return content.split()

test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))

输出:

[Tensor(shape=[3], dtype=String, value= ['Welcome', 'to', 'Beijing'])]

Lookup

Lookup为词表映射变换,用来将Token转换为Index。在使用Lookup前,需要构造词表,一般可以加载已有的词表,或使用Vocab生成词表。这里我们选择使用Vocab.from_dataset方法从数据集中生成词表。

vocab = text.Vocab.from_dataset(test_dataset)
print(vocab.vocab())

输出:

{'to': 2, 'Welcome': 1, 'Beijing': 0}

生成词表后,可以使用map方法进行词表映射变换,将Token转为Index。

test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))

输出:

[Tensor(shape=[3], dtype=Int32, value= [1, 2, 0])]

Lambda Transforms

Lambda函数是一种不需要名字、由一个单独表达式组成的匿名函数,表达式会在调用时被求值。Lambda Transforms可以加载任意定义的Lambda函数,提供足够的灵活度。在这里,我们首先使用一个简单的Lambda函数,对输入数据乘2:

test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))

输出:

[[Tensor(shape=[], dtype=Int64, value= 2)], [Tensor(shape=[], dtype=Int64, value= 4)], [Tensor(shape=[], dtype=Int64, value= 6)]]

可以看到map传入Lambda函数后,迭代获得数据进行了乘2操作。

我们也可以定义较复杂的函数,配合Lambda函数实现复杂数据处理:

def func(x):
    return x * x + 2

test_dataset = test_dataset.map(lambda x: func(x))
print(list(test_dataset.create_tuple_iterator()))

输出:

[[Tensor(shape=[3], dtype=Int32, value= [3, 6, 2])]]

后续会更新更详细的Transforms操作~~~
打卡

以下是一些使用transforms进行数据增强的代码示例: 1. 使用FiveCrop进行数据增强: ```python train_transform = transforms.Compose(\[ transforms.Resize((224, 224)), transforms.FiveCrop(112), transforms.Lambda(lambda crops: torch.stack(\[(transforms.ToTensor()(crop)) for crop in crops\])) \]) ``` 2. 使用TenCrop进行数据增强: ```python train_transform = transforms.Compose(\[ transforms.Resize((224, 224)), transforms.TenCrop(112, vertical_flip=False), transforms.Lambda(lambda crops: torch.stack(\[(transforms.ToTensor()(crop)) for crop in crops\])) \]) ``` 3. 使用RandomHorizontalFlip进行数据增强: ```python train_transform = transforms.Compose(\[ transforms.Resize((224, 224)), transforms.RandomHorizontalFlip(), transforms.CenterCrop(196) \]) ``` 这些代码示例展示了如何使用transforms模块中的不同函数来进行数据增强操作,包括裁剪、翻转和缩放等。你可以根据自己的需求选择适合的数据增强方式来提升模型的性能和鲁棒性。 #### 引用[.reference_title] - *1* *2* *3* [PyTorchtransforms 数据增强:裁剪、翻转、旋转](https://blog.csdn.net/qq_54641516/article/details/126981414)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会Python小白-xin

感谢打赏!我会持续更新的~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值