动态规划 最长公共子序列 过程图解

长公共子序列(longest common sequence)
最长公共子串(longest common substring)
子序列:一个给定的序列的子序列,将给定序列中零个或多个元素去掉之后得到的结果。(不要求连续)
子串:给定串中任意个连续的字符组成的子序列称为该串的子串。(必须连续)

在这里插入图片描述

字符序列: {a,b,c,d,e,f,g,h}, 它的子序列: {a,c,e,f}
即元素b,d,g,h被去掉后,保持原有的元素序列所得到的结果就是子序列。同理,{a,h},{c,d,e}等都是它的子序列。
它的字串:{c,d,e,f} 即连续元素c,d,e,f组成的串是给定序列的字串。同理,{a,b,c,d},{g,h}等都是它的字串。

给定序列s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2},
s1和s2的相同子序列,且该子序列的长度最长,即是LCS。 s1和s2的其中一个最长公共子序列是 {3,4,6,7,8}

2.动态规划

求解LCS问题,不能使用暴力搜索方法。一个长度为n的序列拥有 2的n次方个子序列它的时间复杂度是指数阶,太恐怖了解决LCS问题,需要借助动态规划的思想。

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。
````若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够==保存==已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。`不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。

3.特征分析

   解决LCS问题,需要把原问题分解成若干个子问题,所以需要刻画LCS的特征。

   设A=“a0,a1,…,am”,B=“b0,b1,…,bn”,且Z=“z0,z1,…,zk”为它们的最长公共子序列。
   不难证明有以下性质:
   如果am=bn,则zk=am=bn,且“z0,z1,…,z(k-1)”是“a0,a1,…,a(m-1)”和“b0,b1,…,b(n-1)”的一个最长公共子序列;
   如果am!=bn,则若zk!=am,蕴涵“z0,z1,…,zk”是“a0,a1,…,a(m-1)”和“b0,b1,…,bn”的一个最长公共子序列;
   如果am!=bn,则若zk!=bn,蕴涵“z0,z1,…,zk”是“a0,a1,…,am”和“b0,b1,…,b(n-1)”的一个最长公共子序列。

   有些同学,一看性质就容易晕菜,所以我给出一个图来让这些同学理解一下:

在这里插入图片描述
S1={1,3,4,5,6,7,7,8}
S2={3,5,7,4,8,6,7,8,2}
1---------------------------------------------------------------------------------
假如S1的最后一个元素 与 S2的最后一个元素相等,那么S1和S2的LCS就等于
{S1减去最后一个元素} 与 {S2减去最后一个元素} 的 LCS +S1和S2相等的最后一个元素。
2---------------------------------------------------------------------------------
假如S1的最后一个元素 与 S2的最后一个元素不等(本例子就是属于这种情况),那么S1和S2的LCS就等于 :
max{S1减去最后一个元素} 与 S2 的LCS, {S2减去最后一个元素} 与 S1 的LCS }。

####4.递归公式
第3节说了LCS的特征,我们可以发现,假设我需要求 a1 … am 和 b1 … b(n-1)的LCS 和 a1 … a(m-1) 和 b1 … bn的LCS,一定会]递归地并且重复地把如a1… a(m-1) 与 b1 … b(n-1) 的 LCS 计算几次。所以我们需要一个数据结构来记录中间结果,避免重复计算。

假设我们用

c[i,j]表示Xi 和 Yj 的LCS的长度

(直接保存最长公共子序列的中间结果不现实,需要先借助LCS的长度)。

X = {x1 … xm},
Y={y1…yn},
Xi = {x1 … xi},
Yj={y1… yj}。可得递归公式如下:

在这里插入图片描述

5.计算LCS的长度
以s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2}为例

在这里插入图片描述

图中的空白格子需要填上相应的数字(这个数字就是c[i,j]的定义,记录的LCS的长度值)。填的规则依据递归公式,简单来说:如果横竖(i,j)对应的两个元素相等,该格子的值

= c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。首先初始化该表:

在这里插入图片描述

      然后,一行一行地从上往下填:

在这里插入图片描述

      S1的元素3 与 S2的元素3 相等,所以 c[2,1] = c[1,0] + 1。继续填充:

在这里插入图片描述S1的元素3 与 S2的元素5 不等,c[2,2] =max(c[1,2],c[2,1]),图中c[1,2] 和 c[2,1] 背景色为浅黄色。

        继续填充:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

中间几行填写规则不变,直接跳到最后一行:
在这里插入图片描述 至此,该表填完。根据性质,c[8,9] = S1 和 S2 的 LCS的长度,即为5。

6.构造LCS

本文S1和S2的最LCS并不是只有1个,本文并不是着重讲输出两个序列的所有LCS,只是介绍如何通过上表,输出其中一个LCS。
我们根据递归公式构建了上表,我们将从最后一个元素c[8][9]倒推出S1和S2的LCS。

   c[8][9] = 5,且S1[8] != S2[9],
   所以倒推回去,c[8][9]的值来源于c[8][8]的值(因为c[8][8] > c[7][9])。

   c[8][8] = 5,  且S1[8] = S2[8], 
   所以倒推回去,c[8][8]的值来源于 c[7][7]。

   以此类推,
   如果遇到
S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1]
   这种存在分支的情况,这里请都选择一个方向
   (之后遇到这样的情况,也选择相同的方向)

第一种结果为:

在这里插入图片描述

      这就是倒推回去的路径,棕色方格为相等元素,即LCS = {3,4,6,7,8},这是其中一个结果。

      如果如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,选择另一个方向,会得到另一个结果。

在这里插入图片描述
即LCS ={3,5,7,7,8}。

7.关于时间复杂度

构建c[i][j]表需要Θ(mn),输出1个LCS的序列需要Θ(m+n)
参考
https://blog.csdn.net/hrn1216/article/details/51534607?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-1.control

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值