组合数计算的几种方法

组合数计算的几种方法

方法一、公式法(此方法适合n和m都很小时使用)

公式:C(n,m)=C(n-1,m)+C(n-1,m-1)
我们在进行计算时可以采用动态规划的方法
代码描述:

	static long C(int n,int m) {
		long[] res=new long[m+1];
		Arrays.fill(res, 1);
		for(int i=0;i<=n;i++) {
			for(int j=Math.min(i, m);j>=0;j--) {
				if(j==0 || i==j) {
					res[j]=1;
					continue;
				}
				res[j]=res[j]+res[j-1];
			}
		}
		return res[m];
	}

方法二、利用乘法逆元(此方法适合对组合数求模时候使用)

对于乘法逆元不了解的需要自行百度,我们在此之说目的,引入乘法逆元是为了使得(a/b)%p转化为(a*inv(b))%p,即将除法求模转换为乘法求模,对于逆元的求解本人比较喜欢用费马小定理,其要求是gcd(b,p)==1 && p为质数,在这种情况下inv(b)=pow(b,p-2,p)。
代码描述:

	//组合数快速计算 
	static long C(int n,int m) {
		if(m<0 || n<m) return -1;  //不存在
		if(m>n-m) m=n-m;          //转换为小的一部分
		long up=1,lo=1;
		for(int i=0;i<m;i++) {
			up=(up*(n-i))%p;
			lo=(lo*(i+1))%p;
		}
		return (up*inv((int)lo,p))%p;
	}
	
	static int inv(int a,int p) {
		return quickPow(a,p-2,p);
		//另一种求逆元的方法
		//return (int)(long)(p-p/a)*inv(p%a,p)%p;
	}
	
	static int quickPow(int a,int b,int mod) {
		long x=a % mod;
		long res=1;
		while(b!=0) {
			if((b&1)==1) res=(res*x)%mod;
			x=(x*x)%mod;
			b>>=1;
		}
		return (int)res;
	}

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论

打赏作者

吹牛大王历险记

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值