目录
Open3D点云算法汇总及实战案例汇总的目录地址:
Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客
一、概述
基于曲率大小的特征点提取是一种常见的点云处理方法,用于识别和提取点云中具有显著几何特征的关键点。通过计算点云中每个点的曲率,并选择曲率较大的点作为特征点,可以在点云中保留那些具有明显形状变化的区域,如边缘、角点等。这种方法在三维重建、物体识别和特征匹配等领域有广泛的应用。
1.1原理
曲率反映了点云表面局部区域的弯曲程度,是描述几何特征的重要指标。
目录
Open3D点云算法汇总及实战案例汇总的目录地址:
Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客
基于曲率大小的特征点提取是一种常见的点云处理方法,用于识别和提取点云中具有显著几何特征的关键点。通过计算点云中每个点的曲率,并选择曲率较大的点作为特征点,可以在点云中保留那些具有明显形状变化的区域,如边缘、角点等。这种方法在三维重建、物体识别和特征匹配等领域有广泛的应用。
曲率反映了点云表面局部区域的弯曲程度,是描述几何特征的重要指标。
1195

被折叠的 条评论
为什么被折叠?