MySQL基础——多表查询和事务

目录

1多表关系

2多表查询概述

3连接查询

3.1内连接

3.2左外连接

3.3右外连接

3.4自连接

4联合查询

5子查询

5.1标量子查询(子查询结果为单个值)

5.2列子查询(子查询结果为一列)

5.3行子查询(子查询结果为一行)

5.4表子查询(子查询结果为多行多列)

6事务简介和操作

6.1控制事务

6.1.1控制事务一

6.1.2控制事务二

6.2事务的四大特性

6.3并发事务问题

6.4事务隔离级别

6.5并发事务演示

6.5.1 read uncommitted—read committed(赃读问题)

6.5.2 read committed—Repeatable Read(不可重复读问题)

6.5.3 Repeatable Read—serializable(幻读问题)

1多表关系

项目开发中,在进行数据库表结构设计时,会根据业务需求及业务模块之间的关系,分析并设计表结构,由于业务之间相互关联,所以各个表结构之间也存在着各种联系,基本上分为三种:

(1)一对多(多对一):部门 与 员工的关系

(2)多对多:学生 与 课程的关系

(3)一对一:用户 与 用户详情的关系

案例多对多:

创建学生表create,并插入数据insert:

create table student(

    id int auto_increment primary key comment '主键ID',

    name varchar(10) comment '姓名',

    no varchar(10) comment '学号'

) comment '学生表';

insert into student values (null, '黛绮丝', '2000100101'),(null, '谢逊', '2000100102'),(null, '殷天正', '2000100103'),(null, '韦一笑', '2000100104');

创建课程表create,并插入数据insert:

create table course(

    id int auto_increment primary key comment '主键ID',

    name varchar(10) comment '课程名称'

) comment '课程表';

insert into course values (null, 'Java'), (null, 'PHP'), (null , 'MySQL') , (null, 'Hadoop');

创建课程和学生之前的关系表create,并插入数据insert:

create table student_course(

    id int auto_increment comment '主键' primary key,

    studentid int not null comment '学生ID',

    courseid  int not null comment '课程ID',

    constraint fk_courseid foreign key (courseid) references course (id),

    constraint fk_studentid foreign key (studentid) references student (id)

)comment '学生课程中间表';



insert into student_course values (null,1,1),(null,1,2),(null,1,3),(null,2,2),(null,2,3),(null,3,4);

可以看到3个表的关系可视化图:

2多表查询概述

逗号直接连接查询——笛卡尔积

查询单表数据:select * from emp;

执行多表查询: select * from emp , dept; (逗号隔开)

笛卡尔积: 笛卡尔乘积是指在数学中,集合A集合和B集合的所有组合情况。

可以给多表查询加上连接查询的条件来去除无效的笛卡尔积:

select * from emp , dept where emp.dept_id = dept.id;

多表查询分为连接查询子查询

3连接查询

3.1内连接

内连接查询的是两张表交集部分的数据。(也就是绿色部分的数据)

1)隐式内连接

SELECT 字段列表 FROM 表1,表2 WHERE条件... ;

2 )显式内连接

SELECT 字段列表 FROM 表1 [INNER ] JOIN 表2 ON 连接条件 ...

因此下面两个代码效果相同:(emp有17条记录,dept有6条数据。)

select * from emp , dept where emp.dept_id = dept.id;
select * from emp e join dept d on e.dept_id = d.id;

3.2左外连接

左外连接相当于查询表1(左表)的所有数据,当然也包含表1和表2交集部分的数据。左连接完全包含左表,所以这里会查询到至少17条数据。尽管右表对应记录为空。

SELECT 字段列表 FROM 表1 LEFT [ OUTER ] JOIN 表2 ON 条件 ... ;

3.3右外连接

右表的数据要完全都包含,尽管左表中没有这个数据。右外连接相当于查询表2(右表)的所有数据,当然也包含表1和表2交集部分的数据。

SELECT 字段列表 FROM 表1 RIGHT [ OUTER ] JOIN 表2 ON 条件 ... ;

3.4自连接

自连接查询,顾名思义,就是自己连接自己,也就是把一张表连接查询多次。

自连接查询,可以是内连接查询,也可以是外连接查询。

可以把两个自连接的表看成两个不同的表,类比前面的内外连接理解。

例1. 查询员工 及其 所属领导的名字——内连接

select a.name '员工', b.name '领导' from emp a , emp b where a.managerid = b.id;

例2. 查询所有员工 emp 及其领导的名字 emp , 如果员工没有领导, 也需要查询出来——外连接(内连接只查询相交部分)

select a.name '员工', b.name '领导' from emp a left join emp b on a.managerid = b.id;

4联合查询

对于union查询,就是把多次查询的结果合并起来,形成一个新的查询结果集。

UNION[ ALL ]直接全部合并,UNION对查询结果要去重。

语法:

SELECT字段列表 FROM表A...

UNION[ ALL ]

SELECT 字段列表 FROM表B.... ;

案例:将薪资低于 5000 的员工 , 和 年龄大于 50 岁的员工全部查询出来.

表(1)将薪资低于 5000 的员工

表(2)年龄大于 50 岁的员工

UNION ALL直接将上下(1)(2)表合并在一起,不管是否重复。

UNION也是直接将上下(1)(2)表合并在一起,但是去重了。

等价于where和or组合条件查询,以下代码结果同上。

select * from emp where salary < 5000 or age > 50
order by id;

注意:对于联合查询的多张表的列数必须保持一致,字段类型也需要保持一致。

5子查询

SQL语句中嵌套SELECT语句,称为嵌套查询,又称子查询。

语法:SELECT * FROM t1 WHERE column1 = ( SELECT column1 FROM t2 );

子查询外部的语句可以是INSERT / UPDATE /DELETE / SELECT的任何一个。

根据子查询结果不同,分为:(原来是这样!!!!)

A.标量子查询(子查询结果为单个值)

B.列子查询(子查询结果为一列)

C.行子查询(子查询结果为一行)

D.表子查询(子查询结果为多行多列)

根据子查询位置,分为:

A. WHERE之后

B. FROM之后

C. SELECT之后

5.1标量子查询(子查询结果为单个值)

子查询返回的结果是单个值(数字、字符串、日期等),最简单的形式,这种子查询称为标量子查询。

常用的操作符: =<>> >= <<=

案例:1. 查询 "销售部(dept表)" 的所有员工(emp表)信息。

代码:

select * from emp where dept_id = (select id from dept where name = '销售部');

分析:

(1)先查询 "销售部" 部门ID

select id from dept where name = '销售部';

返回的是单个值4:

(2)利用子查询:根据销售部部门ID, 查询员工信息

select * from emp where dept_id = (select id from dept where name = '销售部');

相当于:select * from emp where dept_id = 4;

案例2. 查询在 "方东白" 入职之后的员工信息。

代码:

select * from emp

 where entrydate > (select entrydate from emp where name = '方东白');

分析:

大于某入职时间(emp表)的员工信息(emp表),虽然是一个表,但是条件不能并列直接得到。条件2依赖于条件1。

(1)查询 方东白 的入职日期

select entrydate from emp where name = '方东白';

一个人的入职时间,肯定也是一个值:

(2)查询指定入职日期之后入职的员工信息

select * from emp

where entrydate > (select entrydate from emp where name = '方东白');

5.2列子查询(子查询结果为一列)

子查询返回的结果是一列(可以是多行),这种子查询称为列子查询。

常用的操作符:IN(相当于单个的=)、NOT IN(不等于)、

ANY和SOME(任意满足一个就行)、ALL(全部满足)

案例1.查询 "销售部" "市场部" 的所有员工信息

select * from emp

where dept_id in (select id from dept where name = '销售部' or name = '市场部');

# 子表返回的是一个范围,就不能用=,而要用in。下图可以看到子表返回的是1列数据(多行数据)

案例2. 查询比 财务部 所有人工资都高的员工信息

代码:

select * from emp

where salary > all ( select salary from emp where dept_id = (select id from dept where name = '财务部') );

分析:

(1). 查询所有 财务部 人员工资

先找出财务部id:

select id from dept where name = '财务部';

再找出财务部的所有薪资:

select salary from emp where dept_id = (select id from dept where name = '财务部');

(2). 比 财务部 所有人工资都高的员工信息

select * from emp where salary > all ( select salary from emp where dept_id = (select id from dept where name = '财务部') );

5.3行子查询(子查询结果为一行)

子查询返回的结果是一行(可以是多列),这种子查询称为行子查询。

常用的操作符:= 、<>、IN 、NOT IN

案例:查询与 "张无忌" 的薪资及直属领导相同的员工信息 ;

代码:这里=in都可以

select * from emp where (salary,managerid) = (select salary, managerid from emp where name = '张无忌');

分析:

(1)查询 "张无忌" 的薪资及直属领导

select salary, managerid from emp where name = '张无忌';

子表返回的是一行(多列)数据。

(2)查询与 "张无忌" 的薪资及直属领导相同的员工信息 ;

select * from emp where (salary,managerid) = (select salary, managerid from emp where name = '张无忌');

5.4表子查询(子查询结果为多行多列)

子查询返回的结果是多行多列,这种子查询称为表子查询。

常用的操作符:IN,或接在from后

案例1. 查询与 "鹿杖客" , "宋远桥" 的职位和薪资相同的员工信息

代码:

select * from emp where (job,salary) in ( select job, salary from emp where name = '鹿杖客' or name = '宋远桥' );

分析:

(1)查询 "鹿杖客" , "宋远桥" 的职位和薪资

select job, salary from emp where name = '鹿杖客' or name = '宋远桥';

子表返回的是2行2列的记录:

(2) 查询与 "鹿杖客" , "宋远桥" 的职位和薪资相同的员工信息

select * from emp where (job,salary) in ( select job, salary from emp where name = '鹿杖客' or name = '宋远桥' );

案例2. 查询入职日期是 "2006-01-01" 之后的员工信息 , 及其部门信息

分析:

(1)入职日期是 "2006-01-01" 之后的员工信息

select * from emp where entrydate > '2006-01-01';

(2)查询这部分员工, 对应部门信息;

select e.*, d.* from (select * from emp where entrydate > '2006-01-01') e left join dept d on e.dept_id = d.id ;

多表查询总结:

6事务简介和操作

事务是一组操作的集合,它是一个不可分割的工作单位,事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败

就比如:张三给李四转账1000块钱,张三银行账户的钱减少1000,而李四银行账户的钱要增加1000。这一组操作就必须在一个事务的范围内,要么都成功,要么都失败。

事务操作:执行成功就提交COMMIT,失败报错就回滚ROLLBACK。

6.1控制事务

6.1.1控制事务一

1).查看/设置事务提交方式

SELECT @@autocommit ;

SET @@autocommit = 0 ;

 #设置为手动提交,必须输入COMMIT;才能让数据改变

2).提交事务

COMMIT;

3 ).回滚事务

ROLLBACK;

#当数据操作报错,执行回滚,就不会对部分数据造成影响,保证数据的正确性和完整性

6.1.2控制事务二

1)开启事务

STARTTRANSACTION

或BEGIN ;

2).提交事务(成功时)

COMMIT;

3 ).回滚事务(报错时)

ROLLBACK;

6.2事务的四大特性(ACID

(1)原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。

(2)一致性(Consistency) :事务完成时,必须使所有的数据都保持一致状态。

(3)隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。

(4)持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。因为数据库中的数据最终是存储在磁盘中的。

6.3并发事务问题

(1)脏读

—个事务读到另外一个事务还没有提交的数据。

(2)不可重复读

一个事务先后读取同一条记录,但两次读取的数据不同,称之为不可重复读。

(3)幻读

一个事务按照条件查询数据时,没有对应的数据行,但是在插入数据时又发现这行数据已经存在,好像出现了“幻影”。

6.4事务隔离级别

为了解决并发事务所引发的问题,在数据库中引入了事务隔离级别。主要有以下几种:

查看事务隔离级别

SELECT @@TRANSACTION_ISOLATION;

果然是默认的:Repeatable Read

设置事务隔离级别

SET[SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL

{READ UNCOMMITTEDlREAD COMMITTED | REPEATABLE READ |SERIALIZABLE }

例:set session transaction isolation level read uncommitted ;

6.5并发事务演示

6.5.1 read uncommitted—read committed(赃读问题)

(1)模拟两个事务,切换到相应的数据库:

(2)创建表account并插入数据:

create table account(

    id int auto_increment primary key comment '主键ID',

    name varchar(10) comment '姓名',

    money int comment '余额'

) comment '账户表';

insert into account(id, name, money) VALUES (null,'张三',2000),(null,'李四',2000);

(3)设置事务隔离级别为:read uncommitted

(4)赃读:发现左边A事务读到右边B事务还没有提交的数据。

说明read uncommitted会出现赃读情况

read committed来解决赃读问题

read committed就可以解决赃读。同上的操作,将A将事务的隔离级别设置为read committed,然后在B中进行修改,但是不提交,发现A事务中不会出现赃读情况。

当然如果提交事务之后,A和B两个事务对数据库的影响都一样的。

6.5.2 read committed—Repeatable Read(不可重复读问题)

read committed可以解决赃读问题,但是会出现不可重复读问题。这是Repeatable Read可以解决。

当A事务先后读取同一条记录,但两次读取的数据不同,称之为不可重复读。

所以read committed不能解决不可重复读的问题。

Repeatable Read解决了不可重复读问题,当A事务先后读取同一条记录,读取的数据相同(不管B事务是否提交)。

6.5.3 Repeatable Read—serializable(幻读问题)

Repeatable Read可以解决不可重复读的问题,但是事务还是会出现幻读问题。可以用终极serializable来解决。

serializable来解决幻读问题:

注意:事务隔离级别越高,数据越安全,但是性能越低。

  • 16
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值