Python 学习笔记 数据可视化之华夫饼图简介+百分比堆积华夫饼图

本文介绍了Python数据可视化中华夫饼图的用途,包括堆积型块状和点状华夫饼图,以及如何绘制百分比堆积华夫饼图。通过示例代码展示了使用pandas和ggplot库创建百分比堆积华夫饼图的过程,强调了数据预处理和统计变换在图表绘制中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

华夫饼图

展示总数据的组类别情况的一种有效图表 华夫饼的小方格用不同的颜色表示不同的类别,适合快速检视数据集中不同类别的分布和比例,并与其他数据集的分布和比例进行比较。

分类:
1.侧重展示类别数值的堆积型块状华夫饼图;

2.侧重展示类别占比的百分百华夫饼图;

3.点状华夫饼图(dot waffte chart)

绘制点状华夫饼图:

以点为单位显示离散数据;

每种颜色的点表示一个特定类别,并以矩阵形式组合在一起;

适合用来快速检视数据集中不同类别的分布和比例;

与其它数据集分布和比例比较,更容易找出其中模式;

当只有一个变量、类别时(所有点都是相同颜色),点状华夫饼图就相当于比例面积图;

绘制百分比堆积型华夫饼图

百分比堆积型的块状和点状华夫饼图,使用geomtile()函数和geompoint()函数绘制;

需要对数据进行预处理;

先计算数据的百分比;

再转换到10×10矩阵中;

绘制堆积型华夫饼图

先设定        最小元数值;

将数据按最小单元值转换到相应的矩阵中;

再使用geomtile()函数和geompoint()函数绘制块状或点状华夫饼图;

代码1:百分比堆积华夫饼图

import pandas as pd

import numpy as np

from plotnine import *

from plotnine.data import mpg

#百分比堆积型.

nrows=10 #10*10矩阵

categ_table=(np.round(pd.value_counts(mpg['class'] ) * ((nrows*nrows)/(len(mpg['class']))),0)).astype(int)

sort_table=categ_table.sort_values(ascending=False)

a = np.arange(1,nrows+1,1)

b = np.arange(1,nrows+1,1)

X,Y=np.meshgrid(a,b)

df_grid =pd.DataFrame({'x':X.flatten(),'y':Y.flatten()})

df_grid['category']=pd.Categorical(np.repeat(sort_table.index,sort_table[:]),

categories=sort_table.index, ordered=False)

#块状

base_plot=(ggplot(df_grid, aes(x = 'x', y = 'y', fill = 'category')) +

geom_tile(color = "white", size = 0.25) +

coord_fixed(ratio = 1)+

scale_fill_brewer(type='qual',palette="Set2")+

theme_void()+

theme(panel_background = element_blank(),

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值