集成学习
Litra LIN
这个作者很懒,什么都没留下…
展开
-
早高峰共享单车潮汐点的群智优化
任务详细见:早高峰共享单车潮汐点的群智优化感想本次是第一次参加datawhale的组队学习计划遇到的问题:1、部分库安装不上这里使用"conda install geohash"命令下载geohash包,但是import时却报错,解决方法:参考博客:https://www.cnblogs.com/ceeyo/p/11691283.html学习点高频函数的使用:apply()用法:参考博客:https://blog.csdn.net/yanjiangdi/article/details原创 2021-02-19 21:16:20 · 553 阅读 · 1 评论 -
Bagging与随机森林(RF)算法原理总结
Bagging与随机森林算法原理总结在集成学习原理小结中,我们学习到了两个流派,一个是Boosting,它的特点是各个弱学习器之间存在依赖和关系,另一个是Bagging,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合,本文就对集成学习中的Bagging和随机森林做一个总结。随机森林是集成学习中可以和GBDT相较衡的算法,尤其是它可以很方便地进行并行训练,在现在的大数据大样本下很有诱惑力。1.Bagging的原理在集成学习原理总结的Bagging原理这一块,我们画了这么一张流程图从上图可以看原创 2020-08-22 15:59:20 · 2243 阅读 · 0 评论 -
梯度提升树(GBDT)原理总结
前言在Adaboost算法原理小结中,我们对adaboost的原理做了简单介绍,本文对Boosting家族另外一个重要的算法梯度提升树(Gradient Boosting Decision Tree,以下简称GBDT)做总结。1.GBDT概述GBDT也是集成学习Boosting家族的一员,但是却和传统的Adaboost算法由很大的不同,回顾Adaboost,我们利用的是上一轮迭代弱学习器的误差率来更新训练数据集的权重没这样一轮一轮迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器仅限在CAR原创 2020-08-21 21:13:07 · 1557 阅读 · 0 评论 -
Adaboost原理小结
1.前情回顾上一节有讲到集成学习个体学习器之间根据是否存在依赖关系可以分为强依赖关系,以及不存在强依赖关系。强依赖关系代表算法:boosting系列算法,在boosting系列算法中,adaboost既可以作为分类,又可以作为回归。下面对adaboost做一个总结。复习Boosting算法流程对于m个训练样本,根据初始化权重,训练出弱学习器1,根据弱学习器的学习误差率表现来重新更新样本的权重,使得之前弱学习器1学习误差率高的样本点权重变高(学习误差率高的样本点指:分类错误/回归预测后差距很大),使得这原创 2020-08-20 21:09:09 · 836 阅读 · 0 评论 -
集成学习方法总结
集成学习是机器学习中很重要的一部分内容,在各个领域中都有着十分重要的作用,利用集合策略,将相同/不同的弱学习器重新组合成强学习器,达到增强分类/回归预测的结果原创 2020-08-17 13:06:32 · 1021 阅读 · 0 评论
分享