推荐系统算法
文章平均质量分 75
Litra LIN
这个作者很懒,什么都没留下…
展开
-
阿里DMR模型解读
阿里DMR模型开源地址:https://github.com/lvze92/DMR背景这里不对背景做太多解释,主要是:最近比较流行的CTR预估网络主要花很多精力在挖掘用户的潜在兴趣、信息等,但是忽略了user与item之间的关联性,而user-item之间的关联性恰恰是最能够反映用户兴趣的地方,因此本篇文章主要是借鉴了协同过滤(CF) 中计算user-item和item-item矩阵相似度,同时基于注意力机制和position encoding来挖掘不同时期用户兴趣,使用辅助网络来帮助训练。创新点原创 2021-03-01 17:24:54 · 1095 阅读 · 1 评论 -
AB test详解
AB test用于推荐系统在线测试AB test一个总的目的和意图是,判断哪种UI或rerank策略更优,通过事实的依据判断哪种测苦厄更符合用户的习惯和需求。一、背景介绍无法衡量就无法优化,对于互联网产品而言,不仅是推荐系统,整个app系统的更新迭代必然需要建立一套度衡量,来把控整个流程优化的方向,而ABtest系统就是一个很好的进行变量控制和优化方向选取的工具,循环:衡量-发现-迭代-验证。所谓精细化迭代是一种建立在数据基础上的思维方式——用较少的成本获得较好的成果。无数据,不优化,线上分流实验是推原创 2020-12-04 13:05:03 · 21787 阅读 · 2 评论 -
推荐系统架构详解
之前对推荐系统进行学习的过程中,发现自己只是拘泥于其中的一小部分进行学习,没有一个全局系统的认知,经常容易陷入困惑,因此借分享会机会,将推荐系统架构梳理一遍,在梳理的过程中才对推荐系统有了更加清楚的整体认知,并知道了自己还有哪些没学到,也相当于给自己后续的学习提供了方向。原创 2020-11-28 00:54:36 · 7305 阅读 · 1 评论 -
NeuralCF模型——CF与深度学习的结合
1、前言尽管最近的一些工作已经将深度学习运用到了推荐的任务中,但只是用深度学习给一些辅助的信息建模例如项目中的文字描述或音乐的声学特征等等。在表示用户与项目之间的交互仍然使用矩阵分解德国用内积来建模。本篇论文主要是用多层神经网络给用户和数据之间的交互建模,我们的数据主要是居于隐式反馈(例如购买记录,浏览记录等)在本文中,我们 探讨了如何利用DNN来模拟噪声隐式反馈信号的中心问题。显示反馈(explicit feedback):用户直接反映其对产品的喜好信息,如评分等等。隐式反馈(implicit f原创 2020-10-31 12:10:26 · 5466 阅读 · 1 评论 -
Deep Crossing模型——经典的深度学习架构
1、前言承上启下:由于AutoRec模型过于简单的网络结构会出现一些表达能力不足的问题,Deep Crossing模型完整地解决了从特征方程向量稠密化,多层神经网络进行优化目标拟合等一系列深度学习再推荐系统中的应用问题,为后续打下了良好的基础。2、Deep Crossing的应用场景Deep Crossing模型的应用场景是微软搜索引擎Bing中的搜索广告推荐场景。用户在搜索引擎中输入搜索词之后,搜索引擎除了会返回相关结果,还会返回与搜索词相关的广告。尽可能地增加搜索广告的点击率,准确地预测广告点击率原创 2020-10-31 09:12:50 · 2682 阅读 · 0 评论 -
AutoRec--单隐层神经网络推荐模型
AutoRec–单隐层神经网络推荐模型1.1 AutoRec模型基本原理AutoRec是一个标准的自编码器,其基本原理是利用协同过滤中的共现矩阵,完成物品向量/用户向量的自编码。再利用自编码结果得到用户对物品的预估评分,排序后即可得到推荐物品序列。1.2 自编码器自编码器指的是能够完成数据的自动编码的模型。无论是图像、音频,还是文本数据,都可以转换为向量的形式表示。假设其数据向量为r,自编码器的作用是将向量r作为输入,通过自编码器的输出向量尽可能接近本身。“尽可能”:说明自编码器输出结果与真实原创 2020-09-26 13:00:43 · 1186 阅读 · 0 评论 -
python搭建一个简单的推荐系统
利用python 搭建一个简单的推荐系统推荐系统实战前言现如今,我们的生活离不开推荐系统,推荐系统已经融入到我们生活的方方面面,电商,音乐,电影,图书…到处都是推荐系统的身影,今天使用python简单地搭建一个图书推荐系统,下面是推荐系统常见的流程。准备数据选择算法模型训练效果评估'''Author:LitraLINTime:2020.09.25Evrionment:python3.7+'''import osimport jsonimport randomimport m原创 2020-09-25 21:20:12 · 3574 阅读 · 2 评论
分享