Pytorch:实现线性回归和非线性回归

       本节主要基于Pytorch实现线性回归和非线性回归。帮助小白熟悉Pytorch的使用,深度理解神经网络的工作原理。为便于阅读与理解,本节将建立两个文件,分别为“Pytorch_Network_01.py”和“Pytorch_Train_01.py”。“Pytorch_Network_01.py”文件主要包含线性网络和非线性网络类,“Pytorch_Train_01.py”文件用于网络训练。

Pytorch_Network_01.py

'''
文件功能: 搭建全连接神经网络, 并进行初始化
线性网络: Linear_Net
非线性网络: Nonlinear_Net
'''

import torch
import torch.nn as nn

# 线性网络
class Linear_Net(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(Linear_Net, self).__init__()
        self.input_layer = nn.Linear(input_dim, 5)
        self.output_layer = nn.Linear(5, output_dim)

    def forward(self, x):
        x1 = self.input_layer(x)
        y = self.output_layer(x1)
        return y

    def init(self):
        self.input_layer.weight.data = torch.randn(self.input_layer.weight.size())
        self.output_layer.weight.data =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值