一元二次函数教案


一元二次函数的表达式

一般式

y = ax2+bx+c (a≠0)

  • 为何 a≠0 ?(反推法)
    ∵ a=0
    ∴ y=bx+c,当b≠0,此为一元一次函数。
                       当b=0,此为常数函数。
    可得:a≠0

  • 提问学生一元一次函数的表达式,并在表达式上做出比较,巩固所学
    一元二次函数:y = ax2+bx+c (a≠0)
    一元一次函数:y = ax+b(a≠0)

顶点式

暂且跳过,之后提及


一元二次函数的图像

直的,弯的 … 此时的我们并不了解这个陌生人,那么如何揭开它神秘的面纱,请 描点法 为我们揭秘

1. 描点法

描点法,顾名思义,先描点再画图。废话不多说,咱直接举例说明

eg:y=x2

  1. 取不同的 x 的值,算出相应的 y 值
x...-3-2-10123...
y...9410149...
  1. 将上述的点涂在坐标系中,并将其连接,便得到了 y=x2 的图像
    在这里插入图片描述

同理,接下来让学生用此方法画出以下一元二次函数的图像: y= -x2 、 y= x2+1、y= -x2+1、 y= x2+x+1、 y= -x2+x+1

  • 问:还记得一元一次函数的图像是什么吗?

  • 问:那想要画一个一元一次函数的图像至少需要几个点呢?

  • 问:观察咱们刚刚画过的一元二次函数的图像,他们有什么特点?
    曲线,对称 ,一会开口向上,一会开口向下…

  • 问:既然对称,那么你们可不可以画出以上所有图像的对称轴呢?

  • 问:观察你们画出的对称轴,他们有什么规律?
    垂直 x 轴并穿过 顶点的直线

  • 问:什么时候开口向上,什么时候开口向下呢?
    观察之前画过的图像,看出规律: a>0 ,开口向上。 a<0 ,开口向下

  • 问:那想要画一个一元二次函数的图像至少需要几个点呢?

  • 问:那你觉得这些点与其他点有什么不一样的呢?
    这些点大多是 顶点,与 x 轴的交点,与 y 轴的交点

从讨论中得到结论,想要画出一个一元二次函数的图像,最重要的点有:顶点、与 x 轴的交点、与 y 轴的交点。如果我们可以快速得到这几个点的坐标,就可以不用繁琐的描点法了?那么如何快速得到这几个点的坐标呢?请看接下来的大救星之 公式法


在介绍公式法之前先插播一个知识点,之后的推导会用到

顶点式 :y = a(x-h)2 + k (a≠0)

  • 怎么得来的?
    由最基本的一元二次函数 y=ax2 左右上下平移得到,举出例子:
    ① y=(x-2)2+1:由 y=x2 右移两个单位,上移动一个单位得到
    ② y=(x+2)2-1:由 y=x2 左移两个单位,下移动一个单位得到

  • 既然是顶点式,那么顶点的坐标是什么?
    观察 ① 的图像可知顶点为(2,1)
    观察 ② 的图像可知顶点为(-2,-1)
    由此,可看出顶点坐标为 (h,k)


2. 公式法

公式法,顾名思义,用公式得到特殊点的坐标,再作图。

① 顶点:(-b/2a, (4ac-b²)/4a)

  • 公式的推导 (配方法,详讲
    在这里插入图片描述

② 与 x 轴的交点:使 ax2+bx+c=0,求解(这里可提问,帮助学生复习)

  • 问:△ 是什么?

  • 问:△ 等于什么?

  • 问:△ 的作用是什么?

  • 问:△ 的值有几种情况,每种情况分别代表什么?

  • 问:求根公式是什么?

  • 问:除了用求根公式,还可以用什么?(回忆十字相乘法 )

③ 与 y 轴的交点:(0,bx+c)


描点法与公式法的比较

描点法虽然在思路上较为简单,但是在找点的时候,需要一定的技巧性,并不好把握。有可能找了二十个点、三十个点、四十个点 … 都没画出来,结局只能是费力不讨好,所以了解就好,不必深究。更多的注意力应放于公式法,即熟练的掌握公式,快速算出特殊点的坐标


课后练习

  • y = 5x2+9
  • y = 4x2+4x+4
  • y = x2+2x
  • y = -3x2-5x
  • y = -x2+x+6
  • y = -7x2
  • y = x2+x-6

本堂小结

在这里插入图片描述

### 实现一元二次函数的曲线拟合 为了完成一元二次函数的曲线拟合,可以采用`scipy.optimize.curve_fit()`方法来执行非线性最小二乘法拟合。此过程涉及定义目标的一元二次方程形式,并利用已知的数据点作为输入来进行参数估计[^3]。 下面展示了一个具体的例子,其中包含了创建模拟数据集的过程以及应用`curve_fit()`进行拟合的操作: ```python import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt # 定义一元二次函数的形式 def quadratic_function(x, a, b, c): return a * x**2 + b * x + c # 创建一些带有噪声的测试数据 np.random.seed(0) # 设置随机种子以便于重现结果 x_data = np.linspace(-10, 10, 50) y_true = 0.5 * x_data**2 + 2*x_data - 3 # 设定真实的系数a=0.5,b=2,c=-3 noise = np.random.normal(size=y_true.shape) y_measured = y_true + noise # 执行曲线拟合 params, params_covariance = curve_fit(quadratic_function, x_data, y_measured) print('Fitted parameters:', params) # 绘制原始测量与拟合后的曲线对比图 plt.figure(figsize=(8,6)) plt.scatter(x_data, y_measured, label='Data with Noise') plt.plot(x_data, quadratic_function(x_data, *params), 'r', label=f'Fitted Curve\ny={params[0]:.2f}x^2+{params[1]:.2f}x+{params[2]:.2f}') plt.legend() plt.show() ``` 上述代码片段首先导入必要的库并定义了一元二次函数的具体形式;接着生成了一些带有一些高斯白噪声音频的真实数据样本用于后续处理;最后通过调用`curve_fit()`完成了对这些数据的最佳拟合操作,并打印出了所得到的最佳匹配参数,同时绘制了原有点位及其对应的最优拟合曲线图像。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

头疼小宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值