B-Sample Game 2021牛客暑期多校训练营4【概率DP】

传送门:B-Sample Game

题意

x x x 个数,随机到数 i i i 的概率是 p i p_i pi,现在进行以下步骤:

  1. 随机生成一个数
  2. 如果之前生成的所有数都不大于当前生成的这个数,则继续进行步骤1;
  3. 否则,进行分数结算并结束,若当前已经生成了 n u m num num​​​ 个数,则总分数为 n u m 2 num ^ 2 num2​ 。

问分数的期望。

思路

参考:【训练题43:概率dp】Sample Game | 2021牛客暑期多校训练营4

比赛的时候推出了一个大概的方程,但是没想出来怎么进行值的递推。赛后看官方题解是直接把式子推出来 O ( n ) O(n) O(n) 做的,我实在有点理解不了那个算式qwq,所以最后参考上面的链接用概率dp做了。

因为生成的序列一定是非降序的,只有最后一个数不是非降序,所以我们设 d p [ i ] dp[i] dp[i] 为数字生成到 i i i​ 时,最后数字总个数的期望值,设 d p 2 [ i ] dp2[i] dp2[i] 是数字生成到 i i i 时,最后数字总个数的平方的期望值,即分数的期望。

dp的转移方程推导

转移的思路为 概率*(下一个状态+贡献),首先我们看 d p dp dp​​ 数组的转移,若当前数字为 i i i​​ ,且下一个数字 j ≥ i j \geq i ji​​​ ,那就还可以接着选择,所以此时期望为 p j ∗ ( d p [ j ] + 1 ) p_j * (dp[j] + 1) pj(dp[j]+1)​​​;相反,若 j < i j < i ji​​ ,则没有能继续转移的状态,期望为 p j ∗ 1 p_j * 1 pj1​​。由此,我们得到 d p dp dp​​ 数组的转移方程式:
d p [ i ] = ∑ j = 1 i − 1 p [ j ] + ∑ j = i n p [ j ] ∗ ( d p [ j ] + 1 ) dp[i] = \sum_{j = 1}^{i - 1} p[j] + \sum_{j = i}^n p[j] * (dp[j] + 1) dp[i]=j=1i1p[j]+j=inp[j](dp[j]+1)

此时的左右式中均含有 d p [ i ] dp[i] dp[i]​​ ,因此我们将右侧的移至左侧,
d p [ i ] ∗ ( 1 − p [ i ] ) = ∑ j = 1 i − 1 p [ j ] + ∑ j = i + 1 n p [ j ] ∗ ( d p [ j ] + 1 ) + p i dp[i] * (1 - p[i]) = \sum_{j = 1}^{i - 1} p[j] + \sum_{j = i + 1}^n p[j] * (dp[j] + 1) + p_i dp[i](1p[i])=j=1i1p[j]+j=i+1np[j](dp[j]+1)+pi
得到最终的转移方程式
d p [ i ] = ∑ j = 1 i − 1 p [ j ] + ∑ j = i + 1 n p [ j ] ∗ ( d p [ j ] + 1 ) + p i 1 − p [ i ] dp[i] = \frac{\sum_{j = 1}^{i - 1} p[j] + \sum_{j = i + 1}^n p[j] * (dp[j] + 1) + p_i}{1 - p[i]} dp[i]=1p[i]j=1i1p[j]+j=i+1np[j](dp[j]+1)+pi

dp2的转移方程推导

之所以还需要计算 d p 2 dp2 dp2 ,是因为 E ( x 2 ) ! = E 2 ( x ) E(x^2) != E^2(x) E(x2)!=E2(x),所以我们不能简单的计算 d p dp dp 的平方。

若现在我们要得到 E ( ( x + 1 ) 2 ) E((x + 1)^2) E((x+1)2),则 E ( ( x + 1 ) 2 ) = E ( x 2 ) + 2 E ( x ) + 1 E((x + 1)^2) = E(x^2) + 2E(x) + 1 E((x+1)2)=E(x2)+2E(x)+1,即 E ( ( d p [ j ] + 1 ) 2 ) = d p 2 [ j ] + 2 ∗ d p [ j ] + 1 E((dp[j] + 1) ^ 2) = dp2[j] + 2 * dp[j] + 1 E((dp[j]+1)2)=dp2[j]+2dp[j]+1 ,所以对于 j ≥ i j \geq i ji 的情况,此时的期望为 p j ∗ E ( ( d p [ j ] + 1 ) 2 ) = p j ∗ ( d p 2 [ j ] + 2 ∗ d p [ j ] + 1 ) p_j * E((dp[j] + 1)^2) = p_j * (dp2[j] + 2 * dp[j] + 1) pjE((dp[j]+1)2)=pj(dp2[j]+2dp[j]+1) ;而 j < i j < i ji 的情况,由于个数部分为1,平方后不变,所以式子一样。由此,我们得到dp2的转移方程式:
d p 2 [ i ] = ∑ j = 1 i − 1 p [ j ] + ∑ j = i n p [ j ] ∗ ( d p 2 [ j ] + 2 d p [ j ] + 1 ) dp2[i] = \sum_{j = 1}^{i - 1} p[j] + \sum_{j = i}^n p[j] * (dp2[j] + 2dp[j] + 1) dp2[i]=j=1i1p[j]+j=inp[j](dp2[j]+2dp[j]+1)
再次将右项中的 d p 2 [ i ] dp2[i] dp2[i]​ 移动到左侧,
d p 2 [ i ] ∗ ( 1 − p [ i ] ) = ∑ j = 1 i − 1 p [ j ] + ∑ j = i + 1 n p [ j ] ∗ ( d p [ j ] + 1 ) + 2 ∗ d p [ i ] ∗ p i + p [ i ] dp2[i] * (1 - p[i]) = \sum_{j = 1}^{i - 1} p[j] + \sum_{j = i + 1}^n p[j] * (dp[j] + 1) + 2 * dp[i] * p_i + p[i] dp2[i](1p[i])=j=1i1p[j]+j=i+1np[j](dp[j]+1)+2dp[i]pi+p[i]
得到最终的转移方程式
d p 2 [ i ] = ∑ j = 1 i − 1 p [ j ] + ∑ j = i + 1 n p [ j ] ∗ ( d p [ j ] + 1 ) + 2 ∗ d p [ i ] ∗ p i + p [ i ] 1 − p [ i ] dp2[i] = \frac{\sum_{j = 1}^{i - 1} p[j] + \sum_{j = i + 1}^n p[j] * (dp[j] + 1) + 2 * dp[i] * p_i + p[i]}{1 - p[i]} dp2[i]=1p[i]j=1i1p[j]+j=i+1np[j](dp[j]+1)+2dp[i]pi+p[i]
代码实现上,先算一遍 d p dp dp ,再算一遍 d p 2 dp2 dp2 ,注意 d p [ i ] dp[i] dp[i] 的意思是已经取到 i i i 的情况下的长度期望,所以我们最终要求的其实是 d p 2 [ i + 1 ] dp2[i + 1] dp2[i+1],所以在加入答案时,加入 d p 2 [ i ] + 2 ∗ d p [ i ] + 1 dp2[i] + 2 * dp[i] + 1 dp2[i]+2dp[i]+1 而非 d p 2 [ i ] dp2[i] dp2[i]。​

代码

#include<bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
const double eps = 1e-10;

int n;
ll p[N];
ll dp[N], dp2[N];
const int mod = 998244353;

ll qpow(ll x, ll n)
{
    ll ans = 1LL;
    while(n)
    {
        if(n & 1)
            ans = (ans * x) % mod;
        x = x * x % mod;
        n >>= 1;
    }
    return ans;
}

ll inv(ll a)
{
    return qpow(a, mod - 2);
}

int main()
{
    cin >> n;
    ll sum = 0;
    for(int i = 1; i <= n; i++)
    {
        cin >> p[i];
        sum += p[i];
    }
    for(int i = 1; i <= n; i++)
    {
        p[i] = p[i] * inv(sum) % mod;
    }
    for(int i = n; i > 0; i--)
    {
        ll fenz = p[i];
        ll fenm = (1LL - p[i] + mod) % mod;
        for(int j = i + 1; j <= n; j++)
        {
            fenz = (fenz + (p[j] * (dp[j] + 1) % mod)) % mod;
        }
        for(int j = 1; j < i; j++)
        {
            fenz = (fenz + p[j]) % mod;
        }
        dp[i] = fenz * inv(fenm) % mod;
    }
    ll ans = 0;
    for(int i = n; i > 0; i--)
    {
        ll fenz = p[i] * ((2 * dp[i] + 1) % mod) % mod;
        ll fenm = (1LL - p[i] + mod) % mod;
        for(int j = i + 1; j <= n; j++)
        {
            fenz = (fenz + p[j] * (dp2[j] + 2LL * dp[j] % mod + 1) % mod) % mod;
        }
        for(int j = 1; j < i; j++)
        {
            fenz = (fenz + p[j]) % mod;
        }
        dp2[i] = fenz * inv(fenm) % mod;
        ans = (ans + (dp2[i] + dp[i] * 2LL % mod + 1) % mod * p[i] % mod) % mod;
    }
    cout << ans << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值