树(二叉查找树BST、二叉平衡树AVL、红黑树R-B)

本文详细讲解了二叉树、二叉排序树(BST)的插入与删除规则,深入剖析了完全二叉树的性质和判断方法,重点介绍了平衡二叉树(AVL)和红黑树(RBTree)的性质、旋转操作及插入步骤。通过实例演示,展示了这些数据结构在实际编程中的应用。
摘要由CSDN通过智能技术生成

目录

一、二叉树

二、二叉排序树(BST)

性质:

插入规则:

删除规则:

二叉查找树代码实现:

三、完全二叉树

判断一棵树是否是完全二叉树的思路

层次遍历代码(Java)---leetCode102:

四、平衡二叉树(AVL)

性质:

旋转:

概念:

插入步骤:

删除规则:

JAVA实现平衡二叉树的插入、删除等等操作以及测试代码

五、红黑树(R-B Tree)

性质:

旋转:

红黑树的插入步骤:

 红黑树插入实现(Java)


一、二叉树

每个节点最多有两个叶子节点的树是二叉树。

二、二叉排序树(BST)

也叫二叉查找树二叉搜索树

性质:

  1. 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2. 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3. 它的左、右子树也分别为二叉排序树

插入规则:

比父节点小的值放左边,比父节点大的值,放右边,一个父节点最多只能有两个子节点

删除规则:

  1. 删除叶子节点,直接删除
  2. 删除只有左子树或者是有右子树的节点,删除节点,左子树或者右子树直接接上
  3. 删除有左子树和右子树的节点P,找到删除节点的直接后继节点H,节点H替换节点P,删除原来的P节点

(PS:直接后继节点:中序遍历,在删除节点P后一位的节点为直接后继节点)

二叉查找树代码实现:

/**
 * @author Admin
 */
public class BSTTree {
	/**
     * 定义二叉树
     */
    class Node{
        public int iData;
        public double dData;
        public Node leftNode;
        public Node rightNode;
        public void showNode(){
            System.out.println("{"+iData+","+dData+"}");
        }
    }

    private Node root;

    /**
     * 插入节点
     * 规则:比父节点小的值放左边,比父节点大的值,放右边,一个父节点最多只能有两个子节点
     * @param iData
     * @param dData
     */
    public void insert(int iData,double dData){
        Node newNode = new Node();
        newNode.iData = iData;
        newNode.dData = dData;
        if(root==null){
            root = newNode;
        }else{
            Node current = root;
            Node parent;
            while (true){
                parent = current;
                //插入左节点
                if(iData< current.iData){
                    current=current.leftNode;
                    if(current==null){
                        parent.leftNode=newNode;
                        return;
                    }
                }else{//插入右节点
                    current=current.rightNode;
                    if(current==null){
                        parent.rightNode = newNode;
                        return;
                    }
                }
            }
        }
    }

    /**
     * 查找节点
     * @param key
     * @return
     */
    public Node find(int key){
        Node current = root;
        if(current==null){
            return new Node();
        }
        while(current.iData!=key){
            if(current.iData>key){
                current=current.leftNode;
            }else{
                current=current.rightNode;
            }
            if(current==null){
                return new Node();
            }
        }
        return current;
    }

    /**
     * 规则:
     * 1、删除叶子节点,直接删除
     * 2、删除只有左子树或者是有右子树的节点,删除节点,左子树或者右子树直接接上
     * 3、删除有左子树和右子树的节点P,找到删除节点的直接后继节点H,节点H替换节点P,删除原来的P节点
     * 直接后继节点:中序遍历,在节点P后一位的节点为直接后继节点
     * @param key
     */
    public void delete(int key){
        //找到需要删除的节点
        Node current = find(key);
        Node parent = current==null?null:current.parentNode;
        if(current!=null){
            //删除节点的左子树不为空
            if(current.leftNode != null && current.rightNode != null){
                //查询待删除节点的直接后继节点
                Node successorNode = getSuccessorNode(current);
                //保存节点数据,便于后面的替换
                int iData = successorNode.iData;
                double dData = successorNode.dData;
                //删除该后继节点
                delete(successorNode.iData);
                //替换节点
                current.iData = iData;
                current.dData = dData;
            }else if(current.leftNode != null || current.rightNode != null){
                //删除含有左子树或者右子树的节点,将删除节点的父节点直接连接删除节点的左子树或者右子树
                if(current.leftNode!=null){
                    current.leftNode.parentNode = parent;
                }else{
                    current.rightNode.parentNode = parent;
                }
                if(parent!=null){
                    if(parent.iData>current.iData){
                        parent.leftNode = current.leftNode != null?current.leftNode:current.rightNode;
                    }else{
                        parent.rightNode = current.leftNode != null?current.leftNode:current.rightNode;
                    }
                }else{
                    //删除节点为根节点,直接将根节点替换为下一个节点
                    if(current.leftNode!=null){
                        root = current.leftNode;
                    }else{
                        root = current.rightNode;
                    }
                }
            }else{
                //删除叶子节点
                if(parent==null){
                    //根节点,直接将树置空
                    root = null;
                }else{
                    //删除叶子节点,直接置空
                    if(parent.iData>current.iData){
                        parent.leftNode = null;
                    }else{
                        parent.rightNode = null;
                    }
                }
            }
        }
    }

    /**
     * 获取节点的直接后继节点
     * @param node
     * @return
     */
    public Node getSuccessorNode(Node node){
        Node current = node==null?null:node.rightNode;
        if(current==null){
            return null;
        }
        while(current.leftNode!=null){
            current = current.leftNode;
        }
        return current;
    }

    /**
     * 查找树最小值和最大值
     * @return
     */
    public Node[] mVal(){
        Node current = root;
        Node maxCurrent = current;
        Node minCurrent = current;
        Node[] minAndMaxVal = new Node[2];
        while(minCurrent.leftNode!=null){
            minCurrent = minCurrent.leftNode;
        }
        minAndMaxVal[0]=minCurrent;
        while(maxCurrent.rightNode!=null){
            maxCurrent = maxCurrent.rightNode;
        }
        minAndMaxVal[1]=maxCurrent;
        return minAndMaxVal;
    }
}

测试二叉查找树代码

public static void main(String[] args) {
	// write your code here
        BSTTree treeTest = new TreeTest();
        treeTest.insert(3,3.03);
        treeTest.insert(5,5.05);
        treeTest.insert(1,1.01);
        treeTest.insert(2,2.02);
        treeTest.insert(4,4.04);
        treeTest.insert(6,6.06);
    	//查找节点3
        BSTTree.Node node = treeTest.find(5);
        if(node == null){
            System.out.println("can not find it");
        }else{
            node.showNode();
        }
        BSTTree.Node[] temp = treeTest.mVal();
        temp[0].showNode();
        temp[1].showNode();
    	//删除节点3
        treeTest.delete(5);
    	//再次查找
        BSTTree.Node node1 = treeTest.find(5);
        if(node1 == null){
            System.out.println("can not find it");
        }else{
            node1.showNode();
        }
    }

结果:

三、完全二叉树

叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部。

性质:

1、具有n个结点的完全二叉树的深度[log2n]+1

2、如果对一棵有n个结点的完全二叉树的结点按层序编号, 则对任一结点i (1≤i≤n) 有:

  • 如果i=1, 则结点i是二叉树的根, 无双亲;如果i>1, 则其双亲parent (i) 是结点[i/2].
  • 如果2i>n, 则结点i无左孩子, 否则其左孩子lchild (i) 是结点2i;
  • 如果2i+1>n, 则结点i无右孩子, 否则其右孩子rchild (i) 是结点2i+1.

判断一棵树是否是完全二叉树的思路

1、如果树为空,则直接返回错

2、如果树不为空:层序遍历二叉树

2.1、如果一个结点左右孩子都不为空,则pop该节点,将其左右孩子入队列;

2.1、如果遇到一个结点,左孩子为空,右孩子不为空,则该树一定不是完全二叉树;

2.2、如果遇到一个结点,左孩子不为空,右孩子为空;或者左右孩子都为空,且则该节点之后的队列中的结点都为叶子节点,该树才是完全二叉树,否则就不是完全二叉树;

层次遍历代码(Java)---leetCode102:

static class TreeNode{
    int val;
    TreeNode left;
    TreeNode right;
    TreeNode(){}
    TreeNode(int val){
        this.val = val;
    }
    TreeNode(int val,TreeNode left,TreeNode right){
        this.val = val;
        this.left = left;
        this.right = right;
    }
    public void showNode(){
        System.out.println("{"+val+":"+((left==null)?null:left.val)+":"+((right==null)?null:right.val)+"}");
    }
}

public static void main(String[] args) {
    TreeNode tree1 = new TreeNode(9);
    TreeNode tree2 = new TreeNode(15);
    TreeNode tree3 = new TreeNode(7);
    TreeNode tree4 = new TreeNode(20,tree2,tree3);
    TreeNode tree5 = new TreeNode(3,tree1,tree4);
    List<List<Integer>> res = new ArrayList<>();
    Queue<TreeNode> queue = new LinkedList<>();
    queue.add(tree5);
    while (!queue.isEmpty()){
        int count = queue.size();
        List<Integer> list = new ArrayList<>();
        while (count > 0) {
            TreeNode node = queue.poll();
            list.add(node==null?null:node.val);
            if(node!=null && node.left!=null){
                queue.add(node.left);
            }
            if(node!=null && node.right!=null){
                queue.add(node.right);
            }
            count--;
        }
        res.add(list);
    }
    for (List<Integer> re : res) {
        System.out.println(re);
    }
}

四、平衡二叉树(AVL)

性质:

1、是二叉排序树

2、每个节点的左子树和右子树的高度之差至多等于1,大于1则失衡,需要旋转纠正

旋转:

1、左旋

  • 根节点为根节点的左子树
  • 根节点的左子树根节点的右子树

2、右旋

  • 根节点为根节点的右子树
  • 根节点的右子树根节点的左子树

概念:

平衡因子(BF):节点的左子树高度减右子树高度

最小不平衡子树:往平衡二叉树中插入新的节点,从插入点由下往上,依次遍历插入点的各个祖先节点,记录第一个遍历到的平衡因子的绝对值 |BF| >1的祖先节点,以该节点为根节点的子树,即为这棵树的最小不平衡子树。

4 种「旋转」纠正类型(只需纠正最小不平衡子树即可,最小不平衡子树是距离插入节点最近的,并且BF的绝对值大于1的节点为根节点的子树):

  1. LL 型(关注BF=2,BF=1):插入左孩子的左子树,右旋(BF为平衡因子,即左子树高度减右子树高度
  2. RR 型(关注BF=-2,BF=-1):插入右孩子的右子树,左旋
  3. LR 型(关注BF=2,BF=-1):插入左孩子的右子树,先左旋,再右旋
  4. RL 型(关注BF=-2,BF=1):插入右孩子的左子树,先右旋,再左旋

下图中,单个节点第一个值为节点数据,第二个是平衡因子BF

第一种:右旋,2为新根节点,3为2的右子树

第二种:先左旋,变为LL型(如下图),再右旋,2为新根节点,3为2的右子树

第三种:左旋,2为新根节点,1为2的左子树

第四种:先右旋,变成RR型(如下图),再左旋,2为新根节点,1为2的左子树

插入步骤:

  1. 生成二叉查找树
  2. 计算平衡因子,判断是否需要调整,以及如何调整(需要调整的情况就是上面列的四种类型)

删除规则:

  1. 删除节点为叶子节点时,更新该节点的父节点高度,以及往上所有父节点高度;
  2. 删除节点只有左子树或者右子树时,该删除节点下的左子树或右子树接上,并且更新原删除节点的父节点高度;
  3. 删除节点有左子树和右子树时,将该删除节点替换为删除节点的直接后继节点,并且回调本方法删除该后继节点;
  4. 删除后,需要从根节点往下,依次计算平衡因子,判断是否失衡,并调整

例题:{3,2,1,4,5,6,7,10,9,8}构造平衡二叉树

(以下只列了最难的一步转换,图中的节点,第一个数为保存的数据,第二个数为平衡因子):

节点8插入过程

 失衡,找到最小不平衡子树{6,5,9,7,10,8},RL型(先右旋,再左旋),节点{6,9,7}右旋,7的右子树变为9的左子树如下图

节点{6,7,9}左旋,节点6变为节点7的左子树,得到结果

 d43154d33ee3348ad51ea8ca72eda399.png

JAVA实现平衡二叉树的插入、删除等等操作以及测试代码

package com.examply;

import java.util.*;

/**
 * @author :叙
 */
public class AVLtree {

    static class Tree {
        int height;
        Tree leftTree;
        Tree rightTree;
        Tree parent;
        int data;
        //无参构造方法
        Tree() {
        }

        Tree(int data) {
            this.data = data;
            //默认高度为1
            this.height = 1;
        }
    }

    /**
     * 计算平衡因子
     *
     * @param tree
     * @return
     */
    public int countBF(Tree tree) {
        if (tree == null || tree.leftTree == null && tree.rightTree == null) {
            return 0;
        }
        if (tree.leftTree == null) {
            return -tree.rightTree.height;
        } else if (tree.rightTree == null) {
            return tree.leftTree.height;
        } else {
            return tree.leftTree.height - tree.rightTree.height;
        }
    }

    /**
     * 计算高度
     *
     * @param tree
     */
    public void countHeight(Tree tree) {
        if (tree != null) {
            if (tree.leftTree != null || tree.rightTree != null) {
                //左右子树最高的高度,加一为当前节点高度
                tree.height = Math.max(tree.rightTree == null ? 0 : tree.rightTree.height, tree.leftTree == null ? 0 : tree.leftTree.height) + 1;
            } else {
                tree.height = 1;
            }
        }
    }

    /**
     * 右旋
     * ● 旧根节点为新根节点的右子树
     * ● 新根节点的右子树为旧根节点的左子树
     *
     * @param tree
     */
    public void rightRotate(Tree tree) {
        Tree oldTree = tree;
        Tree newTree = tree.leftTree;
        Tree parent = tree.parent;
        if (parent != null) {
            //确定旧根节点在父类的位置,放入新根节点
            if (oldTree.parent.data > oldTree.data) {
                parent.leftTree = newTree;
            } else {
                parent.rightTree = newTree;
            }
        }
        //修改新根节点的父节点为旧根节点的父节点
        newTree.parent = parent;
        //新根节点的右子树为旧根节点的左子树
        oldTree.leftTree = newTree.rightTree;
        if (newTree.rightTree!=null){
            //新根节点的右子树的父节点为旧根节点
            newTree.rightTree.parent = oldTree;
        }
        //新根节点的右子树为旧根节点
        newTree.rightTree = oldTree;
        //修改旧根节点的父节点为新根节点
        oldTree.parent = newTree;
        //修改高度
        countHeight(oldTree);
        countHeight(newTree);
    }

    /**
     * 左旋
     * ● 旧根节点为新根节点的左子树
     * ● 新根节点的左子树为旧根节点的右子树
     *
     * @param tree
     */
    public void leftRotate(Tree tree) {
        Tree oldTree = tree;
        Tree newTree = tree.rightTree;
        Tree parent = tree.parent;
        if (parent != null) {
            //确定旧根节点在父类的位置,放入新根节点
            if (oldTree.parent.data > oldTree.data) {
                parent.leftTree = newTree;
            } else {
                parent.rightTree = newTree;
            }
        }
        //修改新根节点的父节点为旧根节点的父节点
        newTree.parent = parent;
        //新根节点的左子树为旧根节点的右子树
        oldTree.rightTree = newTree.leftTree;
        if(newTree.leftTree!=null){
            //新根节点的左子树的父节点为旧根节点
            newTree.leftTree.parent = oldTree;
        }
        //修改新根节点的右子树的父节点为旧根节点
        newTree.leftTree = oldTree;
        //修改旧根节点的父节点为新根节点
        oldTree.parent = newTree;
        //修改高度
        countHeight(oldTree);
        countHeight(newTree);
    }

    private Tree root;

    /**
     * 插入节点(递归)
     * @param root
     * @param data
     */
    public void insert(Tree root, int data) {
        //小于根节点,则插入到左边
        if (data < root.data) {
            if (root.leftTree != null) {
                insert(root.leftTree, data);
            } else {
                root.leftTree = new Tree(data);
                root.leftTree.parent = root;
            }
        } else {
            //大于根节点,则插入到右边
            if (root.rightTree != null) {
                insert(root.rightTree, data);
            } else {
                root.rightTree = new Tree(data);
                root.rightTree.parent = root;
            }
        }
        //左子树高则右旋
        if(countBF(root) == 2){
            //左孩子节点的右子树高则先左旋
            if(countBF(root.leftTree) == -1){
                leftRotate(root.leftTree);
            }
            rightRotate(root);
        }
        //右子树高则左旋
        if(countBF(root) == -2){
            //右孩子节点的左子树高则先右旋
            if(countBF(root.rightTree) == 1){
                rightRotate(root.rightTree);
            }
            leftRotate(root);
        }
        //调整之后重新计算节点的高度
        countHeight(root);
    }

    /**
     * 插入
     * @param data
     */
    public Tree insert(int data){
        //初始数据
        if(root ==null){
            root = new Tree(data);
        }else{
            //刷新root,使root始终为根节点
            while(root.parent!=null){
                root = root.parent;
            }
            insert(root,data);
        }
        return root;
    }

    /**
     * 层次遍历树
     * @param tree
     */
    public void showTree(Tree tree){
        List<List<String>> res = new ArrayList<>();
        Queue<Tree> queue = new LinkedList<>();
        queue.add(tree);
        while (!queue.isEmpty()){
            int count = queue.size();
            List<String> list = new ArrayList<>();
            while (count > 0) {
                Tree node = queue.poll();
                list.add("{当前节点:"+node.data+",父节点:"+(node.parent==null?null:node.parent.data)+"}");
                if(node!=null && node.leftTree!=null){
                    queue.add(node.leftTree);
                }
                if(node!=null && node.rightTree!=null){
                    queue.add(node.rightTree);
                }
                count--;
            }
            res.add(list);
        }
        for (List<String> re : res) {
            System.out.println(re);
        }
    }

    /**
     * 删除
     * 1、删除节点为叶子节点时,更新该节点的父节点高度,以及往上所有父节点高度;
     * 2、删除节点只有左子树或者右子树时,该删除节点下的左子树或右子树接上,并且更新原删除节点的父节点高度;
     * 3、删除节点有左子树和右子树时,将该删除节点替换为删除节点的直接后继节点,并且回调本方法删除该后继节点;
     * 4、删除后,需要从根节点往下,依次计算平衡因子,判断是否失衡,并调整
     */
    public Tree delete(Tree root,int key){
        //找到需要删除的节点
        Tree current = find(root,key);
        Tree parent = current==null?null:current.parent;
        if(current!=null){
            //删除节点的左子树不为空
            if(current.leftTree != null && current.rightTree != null){
                //查询待删除节点的直接后继节点
                Tree successorNode = getSuccessorNode(current);
                //保存节点数据,便于后面的替换
                int data = successorNode.data;
                //删除该后继节点
                delete(root,successorNode.data);
                //替换节点
                current.data = data;
            }else if(current.leftTree != null || current.rightTree != null){
                //删除含有左子树或者右子树的节点,将删除节点的父节点直接连接删除节点的左子树或者右子树
                if(current.leftTree!=null){
                    current.leftTree.parent = parent;
                }else{
                    current.rightTree.parent = parent;
                }
                if(parent!=null){
                    if(parent.data>current.data){
                        parent.leftTree = current.leftTree != null?current.leftTree:current.rightTree;
                    }else{
                        parent.rightTree = current.leftTree != null?current.leftTree:current.rightTree;
                    }
                    //更新高度
                    updateHeight(parent);
                }else{
                    //删除节点为根节点,直接将根节点替换为下一个节点
                    if(current.leftTree!=null){
                        root = current.leftTree;
                    }else{
                        root = current.rightTree;
                    }
                }
            }else{
                //删除叶子节点
                if(parent==null){
                    //根节点,直接将树置空
                    root = null;
                }else{
                    //删除叶子节点,直接置空
                    if(parent.data>current.data){
                        parent.leftTree = null;
                    }else{
                        parent.rightTree = null;
                    }
                    //更新高度
                    updateHeight(parent);
                }
            }
            return update(root,key);
        }
        return null;
    }

    /**
     * 从tree节点开始,一直往上更新节点高度
     * @param tree
     */
    public void updateHeight(Tree tree){
        Tree parent = tree;
        while(parent!=null){
            //修改父节点高度
            countHeight(parent);
            parent = parent.parent;
        }
    }

    /**
     * 查找节点
     * @param root
     * @param key
     * @return
     */
    public Tree find(Tree root,int key){
        if(root == null){
            return null;
        }
        Tree current = root;
        while(current.data!=key){
            if(current.data>key){
                current = current.leftTree;
            }else{
                current = current.rightTree;
            }
            if(current==null){
                break;
            }
        }
        return current;
    }

    /**
     * 获取tree的后继节点
     * @param tree
     * @return
     */
    public Tree getSuccessorNode(Tree tree){
        Tree current = tree==null?null:tree.rightTree;
        if(current==null){
            return null;
        }
        while(current.leftTree != null){
            current = current.leftTree;
        }
        return current;
    }

    /**
     * 递归调整二叉树
     * @param root
     * @param key
     */
    public void updateTree(Tree root,int key){
        Tree current = root;
        //左子树高则右旋
        if(countBF(current) == 2){
            //左孩子节点的右子树高则先左旋
            if(countBF(current.leftTree) == -1){
                leftRotate(current.leftTree);
            }
            rightRotate(current);
        }
        //右子树高则左旋
        if(countBF(current) == -2){
            //右孩子节点的左子树高则先右旋
            if(countBF(current.rightTree) == 1){
                rightRotate(current.rightTree);
            }
            leftRotate(current);
        }
        //调整之后重新计算节点的高度
        countHeight(root);
        if(key<current.data){
            if(current.leftTree == null){

            }else{
                updateTree(current.leftTree,key);
            }
        }else{
            if(current.rightTree == null){

            }else{
                updateTree(current.rightTree,key);
            }
        }
    }

    /**
     * 调整二叉树为平衡二叉树
     * @param tree
     * @param data 删除节点
     * @return
     */
    public Tree update(Tree tree,int data){
        //初始数据
        if(tree ==null){
            tree = new Tree(data);
        }else{
            //刷新tree,使tree始终为根节点
            while(tree.parent!=null){
                tree = tree.parent;
            }
            updateTree(tree,data);
        }
        //刷新tree,使tree为根节点
        while(tree.parent!=null){
            tree = tree.parent;
        }
        return tree;
    }

    /**
     * 测试
     * @param args
     */
    public static void main(String[] args) {
        AVLtree avLtree = new AVLtree();
        avLtree.insert(3);
        avLtree.insert(2);
        avLtree.insert(1);
        avLtree.insert(4);
        avLtree.insert(5);
        avLtree.insert(6);
        avLtree.insert(7);
        avLtree.insert(10);
        avLtree.insert(9);
        Tree tree = avLtree.insert(8);
        avLtree.showTree(tree);
        System.out.println("-----------------");
        Tree tree5 = avLtree.delete(tree,5);
        avLtree.showTree(tree5);
        System.out.println("-----------------");
        Tree tree6 = avLtree.delete(tree,6);
        avLtree.showTree(tree6);
    }

}

结果:

五、红黑树(R-B Tree)

介绍

红黑树,其节点分为两类,一类被标记为红色,另一类被标记为黑色;红黑树是一棵不完整的平衡二叉查找树树,

性质

  • 根节点是黑色
  • 叶子节点不存储数据,并且是黑色
  • 任何相邻的节点不能同时为红色,必须使用黑色节点隔开
  • 对于单个节点,该节点到叶子节点的所有路径中都包含相同数目的黑色节点

旋转

  • 左旋
    • 旧根节点的右子树为新根节点的左子树
    • 新根节点的左子树为旧根节点
    • 交换新根节点和旧根节点的颜色,新黑旧红
  • 右旋
    • 旧根节点的左子树为新根节点的右子树
    • 新根节点的右子树为旧根节点
    • 交换新根节点和旧根节点的颜色,新黑旧红

红黑树的插入步骤

  1. 生成二叉查找树
  2. 令插入点为红色
  3. 判断是否需要旋转调整,以及如何调整

判断情况如下

情况一:插入点为根节点,违反了性质1,直接令其为黑色

情况二:插入点的父节点为红色,违反了性质3,需要进行调整

父节点为红色的情况需要再细分为以下几种:

父节点为红色,父节点的兄弟节点为黑色,插入点位于父节点的左子树,如下图,需要先右旋,然后左旋,并交换祖父节点和插入节点的颜色

 父节点为红色,父节点的兄弟节点为黑色,插入点位于父节点的右子树,如下图,需要先左旋,然后右旋,并交换祖父节点和插入节点的颜色

 父节点为红色,父节点的兄弟节点也为红色,如下图,需要把父节点和父节点的兄弟节点全变为黑色,并将祖父节点变为红色,再将祖父节点当作插入点,递归重复判断是否需要调整(PS:若最后把根节点变成了红色,直接将根节点改成黑色即可,如下图第三张)

 例子:假设需要顺序插入{2,4,3,5,6,8,7,9},生成一棵红黑树,以下列出了推导过程图。








 红黑树插入实现(Java)

package com.examply;

import java.util.*;

/**
 * 红黑树
 */
public class RBTree {

    static class RBNode{
        int data;
        RBNode leftNode;
        RBNode rightNode;
        RBNode parent;
        int color;//颜色,0红色1黑色
        //无参构造方法
        RBNode() {
        }

        RBNode(int data) {
            this.data = data;
            //默认颜色为红色
            this.color = 0;
        }
    }

    //红色
    private static final int RED_NODE = 0;
    //黑色
    private static final int BLACK_NODE = 1;

    /**
     * 左旋
     * @param node
     */
    public void leftRotate(RBNode node){
        if(node==null){
            return;
        }
        RBNode oldNode = node.parent;
        RBNode parent = oldNode.parent;
        RBNode newNode = node;
        //新根节点的父节点为旧根节点的父节点
        newNode.parent = parent;
        if(parent!=null){
            if(parent.data<oldNode.data){
                parent.rightNode = newNode;
            }else{
                parent.leftNode = newNode;
            }
        }
        if(newNode.leftNode!=null){
            //新根节点的左子树的父节点为旧根节点
            newNode.leftNode.parent = oldNode;
        }
        //旧根节点的右子树为新根节点的左子树
        oldNode.rightNode = newNode.leftNode;
        //新根节点的左子树为旧根节点
        newNode.leftNode = oldNode;
        //旧根节点的父节点为新根节点
        oldNode.parent = newNode;
    }

    /**
     * 右旋
     * @param node
     */
    public void rightRotate(RBNode node){
        if(node==null){
            return;
        }
        RBNode oldNode = node.parent;
        RBNode parent = oldNode.parent;
        RBNode newNode = node;
        //新根节点的父节点为旧根节点的父节点
        newNode.parent = parent;
        if(parent!=null){
            if(parent.data<oldNode.data){
                parent.rightNode = newNode;
            }else{
                parent.leftNode = newNode;
            }
        }
        if(newNode.rightNode!=null){
            //新根节点的右子树的父节点为旧根节点
            newNode.rightNode.parent = oldNode;
        }
        //旧根节点的左子树为新根节点的右子树
        oldNode.leftNode = newNode.rightNode;
        //新根节点的右子树为旧根节点
        newNode.rightNode = oldNode;
        //旧根节点的父节点为新根节点
        oldNode.parent = newNode;
    }

    /**
     * 插入数据
     * @param root
     * @param data
     */
    public void insert(RBNode root,int data){
        if(root==null){
            return;
        }
        RBNode current = root;
        //插入数据
        if(root.data>data){
            if(root.leftNode!=null){
                current = root.leftNode;
                insert(current,data);
                return;
            }else{
                root.leftNode = new RBNode(data);
                root.leftNode.parent = root;
                current = root.leftNode;
            }
        }else{
            if(root.rightNode!=null){
                current = root.rightNode;
                insert(current,data);
                return;
            }else{
                root.rightNode = new RBNode(data);
                root.rightNode.parent = root;
                current = root.rightNode;
            }
        }
        fixRBTree(current);
    }

    /**
     * 调整红黑树
     * @param current
     */
    public void fixRBTree(RBNode current){
        //根节点,直接变黑色
        if(current.parent==null){
            current.color = BLACK_NODE;
        }else{
            RBNode parent = current.parent;
            //判断父节点为红色
            if(parent.color == RED_NODE){
                //判断插入点位于左子树还是右子树
                if(current.data>parent.data){
                    //判断父节点的兄弟节点位置
                    if(parent.parent.data<parent.data){
                        //RR型
                        //判断父节点的兄弟节点是否为红色
                        if(parent.parent.leftNode!=null && parent.parent.leftNode.color==RED_NODE){
                            //令父节点的兄弟节点为黑色
                            parent.parent.leftNode.color = BLACK_NODE;
                            //令父节点为黑色
                            parent.color = BLACK_NODE;
                            //令祖父节点为红色
                            parent.parent.color = RED_NODE;
                            //递归祖父节点
                            fixRBTree(parent.parent);
                        }else{
                            //左旋
                            leftRotate(current.parent);
                            //新根节点为黑色
                            current.parent.color = BLACK_NODE;
                            //旧根节点为红色
                            if(current.parent.leftNode!=null){
                                current.parent.leftNode.color = RED_NODE;
                            }
                        }
                    }else{
                        //LR型
                        if(parent.parent.rightNode!=null && parent.parent.rightNode.color==RED_NODE){
                            //令父节点的兄弟节点为黑色
                            parent.parent.rightNode.color = BLACK_NODE;
                            //令父节点为黑色
                            parent.color = BLACK_NODE;
                            //令祖父节点为红色
                            parent.parent.color = RED_NODE;
                            //递归祖父节点
                            fixRBTree(parent.parent);
                        }else{
                            //左旋
                            leftRotate(current);
                            //右旋
                            rightRotate(current);
                            //新根节点为黑色
                            current.color = BLACK_NODE;
                            //旧根节点为红色
                            current.rightNode.color = RED_NODE;
                        }
                    }
                }else{
                    //RL型
                    if(parent.parent.data<parent.data){
                        if(parent.parent.leftNode!=null && parent.parent.leftNode.color==RED_NODE){
                            //令父节点的兄弟节点为黑色
                            parent.parent.leftNode.color = BLACK_NODE;
                            //令父节点为黑色
                            parent.color = BLACK_NODE;
                            //令祖父节点为红色
                            parent.parent.color = RED_NODE;
                            //递归祖父节点
                            fixRBTree(parent.parent);
                        }else{
                            //右旋
                            rightRotate(current);
                            //左旋
                            leftRotate(current);
                            //新根节点为黑色
                            current.color = BLACK_NODE;
                            //旧根节点为红色
                            current.leftNode.color = RED_NODE;
                        }
                    }else{
                        //LL型
                        if(parent.parent.rightNode!=null && parent.parent.rightNode.color==RED_NODE){
                            //令父节点的兄弟节点为黑色
                            parent.parent.rightNode.color = BLACK_NODE;
                            //令父节点为黑色
                            parent.color = BLACK_NODE;
                            //令祖父节点为红色
                            parent.parent.color = RED_NODE;
                            //递归祖父节点
                            fixRBTree(parent.parent);
                        }else{
                            //右旋
                            rightRotate(current.parent);
                            //新根节点为黑色
                            current.parent.color = BLACK_NODE;
                            //旧根节点为红色
                            current.parent.rightNode.color = RED_NODE;
                        }
                    }
                }
            }
        }
    }

    private RBNode root;

    public RBNode insert(int data){
        //初始数据
        if(root ==null){
            root = new RBNode(data);
            root.color = BLACK_NODE;
        }else{
            //刷新root,使root始终为根节点
            while(root.parent!=null){
                root = root.parent;
            }
            insert(root,data);
        }
        return root;
    }

    /**
     * 层次遍历树
     * @param tree
     */
    public void showTree(RBNode tree){
        //使tree指向根节点
        while(tree.parent!=null){
            tree = tree.parent;
        }
        List<List<String>> res = new ArrayList<>();
        Queue<RBNode> queue = new LinkedList<>();
        queue.add(tree);
        while (!queue.isEmpty()){
            int count = queue.size();
            List<String> list = new ArrayList<>();
            while (count > 0) {
                RBNode node = queue.poll();
                list.add("{当前节点:"+node.data+"颜色为:"+(node.color==0?"红色":"黑色")+",父节点:"+(node.parent==null?null:node.parent.data)+"}");
                if(node!=null && node.leftNode!=null){
                    queue.add(node.leftNode);
                }
                if(node!=null && node.rightNode!=null){
                    queue.add(node.rightNode);
                }
                count--;
            }
            res.add(list);
        }
        for (List<String> re : res) {
            System.out.println(re);
        }
    }

    public static void main(String[] args) {
        RBTree tree = new RBTree();
        tree.insert(2);
        tree.insert(4);
        tree.insert(3);
        tree.insert(5);
        tree.insert(6);
        tree.insert(8);
        tree.insert(7);
        RBNode root = tree.insert(9);
        tree.showTree(root);
    }

}

 结果:

 以上就是全部内容,不足之处,请多指教

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

☆叙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值