【整除分块】【前缀和】【DP】D. Up the Strip(简单版 + 正常版)

22 篇文章 1 订阅
4 篇文章 0 订阅
本文介绍了整除分块的概念,并通过一个实例详细解析了其计算过程。同时,展示了如何利用整除分块解决动态规划问题,给出了两种不同难度版本的代码实现,包括简单的O(n√n)复杂度版本和复杂版的O(nlogn)复杂度版本。文章深入探讨了动态规划的状态转移和优化策略,适合进阶算法学习者阅读。
摘要由CSDN通过智能技术生成

整除分块

给出一道例题,已知n, 求 ∑ i = 1 n ⌊ n i ⌋ \sum_{i=1}^{n} \lfloor\frac{n}{i} \rfloor i=1nin

这就是整除分块的基本例题

画一个表格找一下怎么计算,以n = 15为例

i123456789101112131415
⌊ 15 i ⌋ \lfloor \frac{15}{i}\rfloor i151575332211111111

证明:

假设分块的左端点为l,要求分块的右端点r.

设分块的值为k,对于区间 [ l , r ] [l,r] [l,r]的每个数满足 k = ⌊ n i ⌋ = ⌊ n l ⌋ k=\lfloor \frac{n}{i}\rfloor=\lfloor \frac{n}{l}\rfloor k=in=ln, 即 k i ≤ n ki \leq n kin,需要找到最大的i使其成立

可得 r = ⌊ n k ⌋ = ⌊ n n l ⌋ r = \lfloor \frac{n}{k}\rfloor=\lfloor \frac{n}{ \frac{n}{l}}\rfloor r=kn=lnn

计算的相关代码如下:

每次计算出相同值的左右端点 [ l , r ] [l, r] [l,r] ,那么相同值的个数就为 r − l + 1 r-l+1 rl+1

int res = 0;
for(int l = 1, r; l <= n; l = r + 1)
{
    r = n / (n / l);
    res += n / l * (r - l + 1);
}

题目

简单版

链接:

https://codeforces.com/problemset/problem/1561/D1


状态表示:

f [ i ] f[i] f[i]: i变为1的种类数

状态转移:

f [ i ] = ∑ j = 1 i − 1 f [ j ] + ∑ j = 2 i f [ ⌊ i j ⌋ ] f[i] = \sum_{j=1}^{i-1}f[j] + \sum_{j=2}^{i}f[ \lfloor \frac{i}{j}\rfloor ] f[i]=j=1i1f[j]+j=2if[ji]

前一部分是考虑减法的方程,后一部分是考虑除法的方程

  • 减法:可以使用前缀和进行优化
  • 除法: ⌊ i j ⌋ \lfloor \frac{i}{j}\rfloor ji 考虑使用整除分块

复杂度为 O ( n n ) O(n \sqrt n) O(nn )

#include<bits/stdc++.h>
using namespace std;

using ll = long long;


void solve()
{
	int n, m;
	cin >> n >> m;
	
	vector<ll> f(n + 1, 0), s(n + 1, 0);
	f[1] = 1;
	s[1] = 1;
	
	for(int i = 2; i <= n; i++)
	{
		f[i] = (f[i] + s[i - 1]) % m;
		
		for(int l = 2, r; l <= i; l = r + 1)
		{
			r = i / (i / l);
			int cnt = r - l + 1;
			
			ll x = f[i / l] * cnt % m;
			f[i] = (f[i] + x) % m;
		}

		s[i] = s[i - 1]	+ f[i];
		s[i] %= m;
	}
	cout << f[n] % m << "\n";
	
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	
	int t;
//	cin >> t;
	t = 1;
	while(t--) 
		solve();
	return 0;
}
 

正常版

https://codeforces.com/contest/1561/problem/D2


这道题n的限制变大,整除分块无法过去

反过来考虑,从小到大进行考虑

状态表示:

f [ i ] f[i] f[i] i变到n的方案数

状态转移:

f [ i ] = ∑ j = i + 1 n f [ j ] + ∑ j = 2 j ∗ i ≤ n ∑ k = i ∗ j m i n ( i ∗ j + j − 1 , n ) f [ k ] f[i] = \sum_{j=i+1}^{n}f[j] + \sum_{j=2}^{j*i\leq n} \sum_{k=i*j}^{min(i*j+j-1,n)}f[k] f[i]=j=i+1nf[j]+j=2jink=ijmin(ij+j1,n)f[k]

状态转移公式可能看着很难懂,下面进行解释:

  • 前一部分:通过加法变到j的方案和,i可以变到 [ i + 1 , n ] [i+1,n] [i+1,n]的任意一个
    • 计算方法:可以通过后缀和进行计算
  • 后一部分:通过乘法变到k的方案数,因为题目是除法,我们反过来就变成了乘法,除法进行考虑,我们找一下原始的一个区间,区间中的每一个值可以通过除法变到同一个值
    • 若除2,区间 [ 2 ∗ i , 2 ∗ i + 1 ] [2*i, 2*i+1] [2i,2i+1]中的数可以变到i, 计算次数为 n / 2 n/2 n/2
    • 若除3,区间 [ 3 ∗ i , 3 ∗ i + 2 ] [3*i, 3*i+2] [3i,3i+2]中的数可以变到i,计算次数为 n / 3 n/3 n/3
    • 若除4,区间 [ 4 ∗ i , 4 ∗ i + 3 ] [4*i, 4*i+3] [4i,4i+3]中的数可以变到i,计算次数为 n / 4 n/4 n/4
    • 若除j,区间 [ j ∗ i , j ∗ i + j − 1 ] [j*i, j*i+j-1] [ji,ji+j1]中的数可以变到i,计算次数为 n / j n/j n/j
    • 统计方法:后缀和: s [ i ∗ j ] − s [ m i n ( i ∗ j + j , n + 1 ) ] s[i * j] - s[min(i * j + j, n + 1)] s[ij]s[min(ij+j,n+1)]

总的计算次数就是 n / 2 + n / 3 + n / 4 + . . . + n / n = n ( 1 / 2 + 1 / 3 + . . . + 1 / n ) n/2+n/3+n/4+...+n/n=n(1/2+1/3+...+1/n) n/2+n/3+n/4+...+n/n=n(1/2+1/3+...+1/n) 后面的是调和级数,复杂度为 l o g ( n ) log(n) log(n),故总的复杂度为 O ( n l o g ( n ) ) O(nlog(n)) O(nlog(n))


#include<bits/stdc++.h>
using namespace std;

using ll = long long;


void solve()
{
	int n, m;
	cin >> n >> m;
	
	vector<ll> f(n + 2, 0), s(n + 2, 0);

	f[n] = 1;
	s[n] = 1;
	
	for(int i = n - 1; i >= 1; i--)
	{
		f[i] = (f[i] + s[i + 1]) % m;
		
		for(int j = 2; j * i <= n; j++)
		{
			// [i * j, i * j + j - 1]
			f[i] = (f[i] + s[i * j] - s[min(i * j + j, n + 1)]) % m;
			f[i] = (f[i] + m) % m;
		}
		s[i] = (s[i + 1] + f[i]) % m;
	}
	
	cout << f[1] << "\n";
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	
	int t;
//	cin >> t;
	t = 1;
	while(t--) 
		solve();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行码棋

码字好辛苦,总结好吃力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值