2023 年东北三省一区职业院校技能大赛“云计算应用(高职组)”赛项样题
目录:需要竞赛软件包环境可练习博主!
2023 年东北三省一区职业院校技能大赛“云计算应用(高职组)”赛项样题
模块一 私有云(30 分) 任务 1. 私有云服务搭建(5 分)
模块三 公有云(40 分) 任务 1. 公有云服务搭建(5 分)
某企业根据自身业务需求,实施数字化转型,规划和建设数字化平台建设,平台聚焦“DevOps 开发运维一体化”和“数据驱动产品开发” , 拟采用开源 OpenStack 搭建企业内部私有云平台, 开源Kubernetes 搭建云原生服务平台,选择国内主流公有云平台服务,基于数字化平台底座,面向业务开发云应用产品。
拟将该任务交给工程师 A 与 B,分工协助完成云平台服务部署、云应用开发、云系统运维等任务,系统架构如图 1 所示,IP 地址规划如表 1 所示。
图 1 系统架构图表 1 IP 地址规划


说明
- 竞赛使用集群模式进行,比赛时给每个参赛队提供独立的租户与用户,各用户的资源配额相同,选手通过用户名与密码登录竞赛私有云平台,创建云主机进行相应答题,同组 2 名选手的账号密码一样;
- 表中的 x 为赛位号;在进行 OpenStack 搭建时的第二块网卡地址根据题意自行创建;
- 根据图表给出的信息,检查硬件连线及网络设备配置,确保网络连接正常;
- 考试所需要的账号资源、竞赛资源包与附件均会在考位信息表与设备确认单中给出;
- 竞赛过程中,为确保服务器的安全,请自行修改服务器密码; 在考试系统提交信息时,请确认自己的 IP 地址,用户名和密码。
模块一 私有云(30 分) 任务 1. 私有云服务搭建(5 分)
- 使用提供的用户名密码,登录竞赛集群云平台,按要求自行使用镜像创建两台云主机,创建完云主机后确保网络正常通信,然后按要求配置服务器,安装基础服务。
- 根据提供安装脚本框架,补充完成 OpenStack 平台各服务组件的部署,使用OpenStack 的各项命令,检测平台和服务运行状态。
任务 2. 私有云服务运维(15 分)
- 在搭建好的 OpenStack 平台上,对 OpenStack 平台及各组件进行运维管理,对云主机、云存储、云网络、云数据库、负载均衡和高可用等进行运维管理。
- 完成私有云应用项目部署,搭建私有博客系统、应用商城网站等。
- 分析和排查 OpenStack 私有云平台、云服务、云应用系统的问题。
任务 3. 私有云运维开发(10 分)
- 在搭建好的 OpenStack 平台上,使用 Ansible 进行自动化运维开发。
- 在搭建好的 OpenStack 平台上,使用 Python 编写代码调用OpenStack APIs 接口与 SDK,完成云平台日常运维工作,如查询虚拟机状态、管理虚拟机等操作。
模块二 容器云(30 分)
任务 1. 容器云服务搭建(5 分)
- 完成 DockerCE、docker-compose 以及 Harbor 仓库的安装,导入给定镜像,并推送到私有仓库。
- 完成 Kubernetes 平台、istio、KubeVirt、Prometheus 等服务的部署,使用容器云平台的各项命令,检测容器云平台和服务的运行状态。
任务 2. 容器云服务运维(15 分)
- 在搭建好的 Kubernetes 平台上,对 Kubernetes 平台及 istio、KubeVirt 各组件进行运维管理,对 Pod、Deployment、Service、Ingress、网络、存储卷和 Istio 服务网格等运维。
- 使用提供的应用程序,基于 Docker 容器编排技术,部署应用系统。采用给定架构来构建 CI/CD 环境,并针对给定应用系统配置持续集成服务。
- 分析和排查 Kubernetes 容器云平台、云服务、云应用的系统问题。
任务 3. 容器云运维开发(10 分)
基于 Kubernetes 集群,使用 Python 编写脚本调用 Kubernetes APIs 与 SDK,实现对 Kubernetes 容器云平台进行管理和运维。
模块三 公有云(40 分) 任务 1. 公有云服务搭建(5 分)
- 根据用户需求,规划公有云服务的资源类型、费用成本等。
- 根据规划,申请云主机、云原生、云数据库、对象存储与块存储服务、缓存服务、负载均衡等云服务,通过公有云的工具检测服务状态。
任务 2. 公有云服务运维(10 分)
- 公有云基础服务的运维操作,包括云主机、云网络、云原生、云数据库、对象存储等服务的参数修改、服务迁移、弹性伸缩、安全管控、自动报警等。
- 基于申请的云服务实现企业应用系统迁移上云,并进行系统安全加固和高可用。
任务 3. 公有云运维开发(10 分)
基于公有云服务 APIs、SDK,开发公有云自动化运维程序。任务 4. 边缘计算系统运维(10 分)
- 在云测部署 Kubernetes 容器云平台,包含 1 个 Master 与 1 个
Node 节点;并在 Node 节点上部署边缘计算 KubeEdge 平台的
CloudCore 模块。
- 在边测上部署 KubeEdge EdgeCore 模块,将边缘节点加入
KubeEdge 平台中。
- 部署云、边、端一体化的边缘计算智能应用,构建完成后,下发 AI 模型,并实现物体识别验证。
任务 5. 边缘计算云应用开发(5 分)
基于边缘计算平台,使用前端主流框架、后端主流框架,编写边缘计算智能管理云应用。
1036

被折叠的 条评论
为什么被折叠?



