2024年海南省职业院校技能大赛(高职组) 大数据应用开发竞赛样题
(一)竞赛时间、内容及总成绩
1.竞赛时间
竞赛时间共为6小时,参赛队自行安排任务进度,休息、饮水、如厕等不设专门用时,统一含在竞赛时间内。
2.竞赛内容概述
| 序号 | 任务名称 | 具体内容 |
|---|---|---|
| 任务一 | 大数据平台环境搭建 | 按照任务书要求,需要基于Docker环境完成Hadoop完全分布式、Spark安装配置、Flink安装配置、Hive安装配置、Kafka安装配置、Flume安装配置、ClickHouse安装配置、HBase安装配置等中的任意三个组件的安装配置 |
| 任务二 | 数据采集 | 按照任务书要求基于Scala语言基于Spark完成离线数据采集,将数据存入Hive的ods层中;按照要求使用Linux命令,利用Flume、Maxwell、Kafka等工具完成实时数据采集 |
| 任务三 | 实时数据处理 | 按照任务书要求使用Scala语言基于Flink完成Kafka中的数据消费,将数据分发至Kafka的dwd层中,并在HBase中进行备份同时建立Hive外表,基于Flink完成相关的数据指标计算并将计算结果存入Redis、ClickHouse中 |
| 任务四 | 离线数据处理 | 按照任务书要求使用Scala语言基于Spark完成离线数据清洗、处理、计算,包括数据的合并、去重、排序、数据类型转换等并将计算结果存入MySQL、HBase、ClickHouse中 |
| 任务五 | 数据可视化 | 按照任务书要求编写前端代码,调用后台数据接口,使用Vue.js、echarts完成数据可视化 |
| 任务六 | 综合分析报告 | 根据要求编写综合分析报告 |
3.竞赛总成绩
“大数据技应用开发”赛项竞赛总成绩为100分,其中包含赛场职业素养5分。
(二)任务须知
1.每组参赛队分配一台竞赛服务器、三台客户机,拥有独立IP组。
2.本次比赛采用统一网络环境比赛,请不要随意更改客户端的网络地址信息,对于更改客户端信息造成的问题,由参赛选手自行承担比赛损失;
3.请不要恶意破坏竞赛环境,对于恶意破坏竞赛环境的参赛者,组委会根据其行为予以处罚直至取消比赛资格。
4.比赛过程中及时保存相关文档。
5.比赛相关文档中不能出现参赛学校名称和参赛选手名称,以赛位号(工位号)代替。
6.参赛选手请勿删除模板内容,若因删除导致任何问题后果自负。
7.若同一文档由不同选手完成,须将文档合并后作为最终结果提交到U盘中。
8.比赛中出现各种问题及时向现场裁判举手示意,不要影响其他参赛队比赛。
(三)任务说明
本项目要求完成离线电商数据统计分析,完成大数据平台环境搭建、数据采集、实时数据处理、离线数据处理、数据可视化及综合分析报告编写等工作。
提供的相关资源包括:
1.大数据环境搭建中需要用到的组件安装包
2.电商相关脱敏业务数据
3.大数据分析集群环境
4.数据采集开发环境
5.实时数据处理开发环境
6.离线数据处理开发环境
7.数据可视化开发环境
8.综合分析报告文档模板
任务一:大数据平台环境搭建
按照任务书要求,需要基于Docker环境完成Hadoop完全分布式、Spark安装配置、Flink安装配置、Hive安装配置、Kafka安装配置、Flume安装配置、ClickHouse安装配置、HBase安装配置等中的任意三个组件的安装配置。
任务二:数据采集
按照任务书要求基于Scala语言基于Spark完成离线数据采集,将数据存入Hive的ods层中;按照任务书要求使用Linux命令,利用Flume、Maxwell等工具完成实时数据采集,将数据存入Kafka指定的Topic中。
任务三:实时数据处理
按照任务书要求使用Scala语言基于Flink完成Kafka中的数据消费,将数据分发至Kafka的dwd层中,并在HBase中进行备份同时建立Hive外表,基于Flink完成相关的数据指标计算并将计算结果存入Redis、ClickHouse中。
任务四:离线数据处理
按照任务书要求使用Scala语言基于Spark完成离线数据清洗、处理、计算,包括数据的合并、去重、排序、数据类型转换等并将计算结果存入MySQL、HBase、ClickHouse中。
任务五:数据可视化
按照任务书要求编写前端代码,调用后台数据接口,使用Vue.js、ECharts完成数据可视化。
任务六:综合分析报告
按照任务书要求,完成综合分析报告编写。
(四)竞赛结果提交要求
1.提交方式
任务成果需拷贝至提供的U盘中。在U盘中以XX工位号建一个文件夹(例如01),将所有任务成果文档保存至该文件夹中。
2.文档要求
竞赛提交的所有文档中不能出现参赛队信息和参赛选手信息,竞赛文档需要填写参赛队信息时以工位号代替(XX代表工位号)。
1317

被折叠的 条评论
为什么被折叠?



