猴子请来的救兵�
码龄4年
关注
提问 私信
  • 博客:35,850
    35,850
    总访问量
  • 6
    原创
  • 508,032
    排名
  • 1
    粉丝
  • 0
    铁粉

个人简介:deep learning 抠图带师

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2020-08-31
博客简介:

qq_50489856的博客

查看详细资料
个人成就
  • 获得12次点赞
  • 内容获得1次评论
  • 获得171次收藏
创作历程
  • 5篇
    2022年
  • 1篇
    2021年
成就勋章
兴趣领域 设置
  • 人工智能
    tensorflowpytorch
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

184人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

电脑安装破解软件跟杀毒软件冲突怎么办

拿联想小新为例打开杀毒软件添加信任文件(也就是老被杀毒软件隔离的文件)然后,就可以流畅安装破解软件了~
原创
发布博客 2022.05.20 ·
623 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Group conv vs. Depthwise separable conv

本王有话说:这俩属于是做轻量化绕不开的经典工作,盘踞武林好多年,我们的目标学会并企图超越它。分组卷积(Group conv)paper原理分组卷积,即ResNeXt的亮点,受Inception和AlexNet的启发产生。Inception中提到,对于卷积来说,卷积核可以看做一个三维滤波器:通道维+空间维(特指特征图的W和H),常规的卷积操作其实就是实现通道相关性和空间相关性的联合映射。Inception提出假设: 卷积层通道间的相关性和空间相关性是可以退耦合的,将它们分开映射,能达到更好的效果。具体
原创
发布博客 2022.04.22 ·
3078 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

轻量级实时分割网络RegSeg的完全解析

@article{gao2021rethink,title={Rethink Dilated Convolution for Real-time Semantic Segmentation},author={Gao, Roland},journal={arXiv preprint arXiv:2111.09957},year={2021}}源码paper废话不多说,开局一张图看性能
原创
发布博客 2022.04.18 ·
6208 阅读 ·
0 点赞 ·
0 评论 ·
17 收藏

深度学习入门:手写字识别最简单全过程

深度学习入门:手写字识别最简单全过程一.将数据集变成.csv格式def convert(imgf, labelf, outf, n): f = open(imgf, "rb") o = open(outf, "w") l = open(labelf, "rb") f.read(16) l.read(8) images = [] for i in range(n): image = [ord(l.read(1))]
原创
发布博客 2022.03.31 ·
991 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

超级详细易懂的GhostNet解析

GhostNet的不完全解析CVPR2020 & IJCV2022(the extended version)Noah’s Ark Lab, Huawei Technologies论文地址: https://arxiv.org/abs/1911.11907源码:https://github.com/huawei-noah/ghostnet.摘要由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络(CNNs)是很困难的。特征图中的冗余性是这些成功cnn的一个重要特征,但在神经结构设计
原创
发布博客 2022.03.31 ·
22335 阅读 ·
10 点赞 ·
0 评论 ·
143 收藏

一看就懂的CE-NET详解

一看就懂的CE-NET详解针对问题u-net及其变体存在限制,连续的pooling和交错的卷积运算会导致一些空间信息的丢失。文章贡献提出了一个DAC模块和一个RMP模块来捕获更多的高级特征并保留更多的空间信息。在医学图像分割中,我们将所提出的数模转换模块和最小均方误差模块与编解码结构相结合。将该方法应用于不同的任务,包括视盘分割、视网膜血管检测、肺分割、细胞轮廓分割和视网膜光学相干断层扫描层分割。结果表明,在这些不同的任务中,所提出的方法优于最先进的方法。网络结构INPUT:448
原创
发布博客 2021.05.02 ·
2611 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

递归级联:无监督的医学图像配准.docx

发布资源 2020.10.17 ·
docx