超级详细易懂的GhostNet解析

GhostNet是一种轻量级的卷积神经网络,通过Ghost Module生成更多特征映射,以低成本实现高性能。它在ImageNet上表现优于MobileNetV3,同时在目标检测等任务上也有优秀效果。Ghost Module包括普通卷积生成内在特征图,然后通过廉价线性运算生成冗余特征,提供多样性的线性操作。
摘要由CSDN通过智能技术生成

GhostNet的不完全解析

CVPR2020 & IJCV2022(the extended version)
Noah’s Ark Lab, Huawei Technologies

论文地址: https://arxiv.org/abs/1911.11907
源码:https://github.com/huawei-noah/ghostnet.

摘要

由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络(CNNs)是很困难的。特征图中的冗余性是这些成功cnn的一个重要特征,但在神经结构设计中很少被研究。
本文提出了一种新的ghost模块,从廉价的操作中生成更多的特征映射。基于一组内在特征映射,应用一系列成本低廉的线性变换来生成许多幽灵特征映射,可以充分揭示内在特征背后的信息。
提出的ghost模块可以作为即插即用组件来升级现有的卷积神经网络。 Ghost bottlenecks被设计为堆栈的ghost模块,可以很容易地建立轻量级的GhostNet。
在基准测试上进行的实验表明,所提出的Ghost模块是baseline模型中卷积层的一个令人印象深刻的替代方案,我们GhostNet可以在ImageNet ILSVRC-2012分类数据集上以相近的计算成本比MobileNetV3获得更高的识别性能(例如75.7%的top-1精度)。

研究动机

在主流的深度神经网络提取的特征图中,丰富甚至冗余的信息通常保证了对输入数据的全面理解。例如&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值