算法设计与分析——回溯法——装载问题

这篇博客探讨了如何使用回溯法来解决装载问题。作者提供了四个程序实现,详细阐述了回溯法在解决此类问题中的应用,并给出了有序输出的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0027算法笔记——【回溯法】回溯法与装载问题

自己写的代码:


#include <iostream>
using namespace std; 
 
template <class Type>
class Loading
{
   
	//friend Type MaxLoading(Type[],Type,int,int []);
	//private:
	public:
		void Backtrack(int i);
		int n,			//集装箱数
            *x,			//当前解
			*bestx;		//当前最优解
			Type *w,	//集装箱重量数组
			c,			//第一艘轮船的载重量
			cw,			//当前载重量
			bestw,		//当前最优载重量
			r;          //剩余集装箱重量
};
 
//template <class Type>
//void  Loading <Type>::Backtrack (int i);
 
template<class Type>
Type MaxLoading(Type w[], Type c, int n, int bestx[]);
 
int main()
{
      
	int n=10,m;
	int c=500,c2=121;
 
	int w[11]={
    0,21,54,21,45,20,65,320,1,20,54};
	int bestx[10];
 
    m=MaxLoading(w, c, n, bestx);
 
	cout<<"轮船的载重量分别为:"<<endl;
	cout<<"c(1)="<<c<<",c(2)="<<c2<<endl;
 
	cout<<"待装集装箱重量分别为:"<<endl;
	cout<<"w(i)=";
	for (int i=1;i<=n;i++)
	{
   
		cout<<w[i]<<" ";
	}
	cout<<endl;
 
	cout<<"回溯选择结果为:"<<endl;
	cout<<"m(1)="<<m<<endl;
	cout<<"x(i)=";
 
	for (int i=1;i<=n;i++)
	{
   
		cout<<bestx[i]<<" ";
	}
	cout<<endl;
 
	int m2=0;
	for (int j=1;j<=n;j++)
	{
   
		m2=m2+w[j]*(1-bestx[j]);
	}
   	cout<<"m(2)="<<m2<<endl;
 
	if(m2>c2)
	{
   
		cout<<"因为m(2)大于c(2),所以原问题无解!"<<endl;
	}
	return 0;
}
 
template <
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值