
介绍 BERT-base-uncased
BERT(Bidirectional Encoder Representations from Transformers)是Google在2018年提出的一种自然语言处理(NLP)模型。它基于Transformer架构,并通过双向训练技术来生成更深层次的语义理解。在BERT模型中,是一个非常常用的版本。是一个包含110M参数的预训练模型。它的命名中“base”表示基础版,而“uncased”表示模型不区分大小写,即在训练和预测过程中会将所有文本转换为小写。是一个功能强大的预训练模型,可以用于各种NLP任务。



















