DFT离散傅里叶

1. 奈奎斯特采样定理

奈奎斯特采样定理是信号处理中的一个核心定理,用来解释如何从离散的采样点中重建原始的连续信号。它指出,为了从离散的采样点中完全重建一个信号,采样率必须至少是信号中最高频率的两倍。

奈奎斯特频率的定义

设一个连续时间信号 x ( t ) x(t) x(t) 含有最高频率为 f max f_{\text{max}} fmax 的分量。根据奈奎斯特定理,要使采样后的离散信号不产生混叠现象(也叫做折叠或别名效应),采样频率 f s f_s fs 必须满足以下条件:

f s ≥ 2 f max f_s \geq 2f_{\text{max}} fs2fmax

其中, 2 f max 2f_{\text{max}} 2fmax 被称为奈奎斯特频率。如果采样频率小于这个值,信号中的高频成分会在重建过程中无法正确恢复,导致混叠。

为什么会发生混叠?

混叠的现象可以理解为,当采样频率不足时,高频信号的频谱在频域内出现重叠,导致在低频区域产生“错误的频率”。这种现象在重建时会使信号失真,无法还原原始信号的所有频率成分。

简单来说,当采样点数不足时,频率空间中的信息被“折叠”到较低的频率,导致高频信息丢失并在重建时被错误地表示为低频信号。

数学推导

设一个正弦信号 x ( t ) = sin ⁡ ( 2 π f t ) x(t) = \sin(2\pi f t) x(t)=sin(2πft),如果采样频率 f s f_s fs 小于 2 f 2f 2f,根据奈奎斯特定理,这个信号在频域内将被折叠到一个较低的频率,从而无法正确恢复。

奈奎斯特定理为我们提供了采样信号的下限,保证在离散采样后,原始信号可以被完全恢复。

一个我觉得还可以的关于奈奎斯特采样的解释

这就是Nyquist-Shannon采样定理,我们希望同时看到轮子的旋转和相位变化,**采样周期要小于整数周期的1/2,采样频率应该大于原始频率的2倍。**同理,对于模拟信号,我们希望同时看到信号的各种特性,采样频率应该大于原始模拟信号的最大频率的两倍,否则将发生混叠(相位/频率模糊)

2. 离散的时间信号与连续的频率信号

当我们处理离散的时间信号时,例如对某个信号在离散的时间点进行采样,得到的时间序列 x ( n ) x(n) x(n) 是离散的。但是该离散时间信号通过离散傅里叶变换 (DFT) 可以表示为一个连续的频谱。这是因为傅里叶变换会将离散时间信号映射到频率域,而频率域中的频谱是连续的。

X ( ω ) = ∑ n = 0 L − 1 x ( n ) e − j ω n X(\omega) = \sum_{n=0}^{L-1} x(n) e^{-j\omega n} X(ω)=n=0L1x(n)ejωn

这里的 X ( ω ) X(\omega) X(ω) 是频域中一个连续的函数,描述了信号在所有频率下的幅度。

频域的采样

由于在实际的数字信号处理中,计算机只能处理有限的离散点,因此我们需要对频率域的连续信号进行采样,得到有限的频率点 X ( k ) X(k) X(k) 来表示。采样间隔可以通过下式给出:

Δ ω = 2 π N \Delta \omega = \frac{2\pi}{N} Δω=N2π

这里 N N N 是频域中的采样点数,表示在频率轴上选择的离散点的个数。最终,傅里叶变换将频域表示为离散的频率点:

X ( 2 π k N ) = ∑ n = 0 L − 1 x ( n ) e − j 2 π k n N X\left( \frac{2\pi k}{N} \right) = \sum_{n=0}^{L-1} x(n) e^{-j \frac{2\pi kn}{N}} X(N2πk)=n=0L1x(n)ejN2πkn

3. 频域采样与混叠现象

当频率域采样点数不足时,会在时间域产生混叠现象。混叠现象的本质是由于频率信息在采样时发生重叠,导致原始信号在时间域中重叠,无法完全恢复信号。

  • N N N 足够大时,逆变换后时间域信号的周期性重复不会发生重叠,可以正确重建原始信号。
  • N < L N < L N<L 时,频率域的采样点不足,时间域的信号会产生重叠,导致混叠和信息丢失。

数学表现

当采样点数不足时,时间域中的信号会呈现出周期性的重叠。例如,对于一个长度为 L L L 的时间序列 x ( n ) x(n) x(n),其傅里叶变换后如果只使用 N N N 个频率点进行采样,逆傅里叶变换时时间域信号的重复间隔为 N N N。当 N N N 小于 L L L 时,重复部分会重叠。

L L L:表示时间域中的样本数(数据点的个数)。假设我们有一个离散时间信号 x ( n ) x(n) x(n),其中 n = 0 , 1 , 2 , . . . , L − 1 n = 0, 1, 2, ..., L-1 n=0,1,2,...,L1,那么 L L L 就是这个时间序列的总长度,也就是时间域中的采样点数。

N N N:表示频域中的样本数,也就是离散傅里叶变换(DFT)后保留的频率分量的数量。傅里叶变换后,我们可以得到 N N N 个频率点,它们分别表示不同的频率分量。

频域中的频率分布:
采样频率 f s f_s fs:时间域的采样频率决定了我们在频域上能够观测到的最大频率(也就是奈奎斯特频率),这个最大频率为:

f Nyquist = f s / 2 f_{\text{Nyquist}}=f_s/2 fNyquist=fs/2

也就是说, N N N 个频率分量分布在从 0 到 f Nyquist f_{\text{Nyquist}} fNyquist 的频率范围内。换句话说, N N N 个频率点对应的是频率范围从 0 到奈奎斯特频率的离散频率分量。

时间域数据点 L L L 与频域点 N N N 的关系:在离散傅里叶变换(DFT)中,通常假设 N = L N = L N=L,即频域中的采样点数和时间域中的采样点数相同,这样可以保证时间和频率之间的对应关系是完备的。

N = L N = L N=L 时,频域中每个频率点对应时间域中的一个独立采样点,能够完整表示信号中的所有频率分量。
如果 N < L N < L N<L,也就是频域中的采样点数少于时间域的采样点数,频率分量会丢失,时间域信号的某些细节将无法在频域中准确表示,导致逆变换时信号重叠或失真,这就是混叠现象的来源。

4. 双重性:时间域与频域的对称性

傅里叶变换展示了时间域与频域之间的一种对称关系,称为傅里叶双重性

时间域离散,频域连续

当时间域信号是离散的,频域表示通常是连续的,如:

X ( ω ) = ∑ n = 0 L − 1 x ( n ) e − j ω n X(\omega) = \sum_{n=0}^{L-1} x(n) e^{-j \omega n} X(ω)=n=0L1x(n)ejωn

时间域连续,频域离散

当时间域信号是周期性的或连续的,它的傅里叶变换将是离散的,即我们常见的正弦信号的频谱表示:

X ( f ) = ∑ n = − ∞ ∞ X [ n ] δ ( f − n f s ) X(f) = \sum_{n=-\infty}^{\infty} X[n] \delta(f - n f_s) X(f)=n=X[n]δ(fnfs)

时间域采样导致频域周期性

时间域的离散化会导致频域变得周期性,这意味着频谱会在频域内周期性重复。

频域采样导致时间域周期性

同样地,频域的离散化会导致时间域信号的周期性重复。这可以解释为什么当频域的采样点数不足时,时间域会出现混叠。

5. 采样数和采样间隔的影响

采样数 N N N 和采样间隔 Δ ω \Delta \omega Δω 对信号的表示有着直接的影响。采样点数不足会导致混叠现象,无法重建原始信号;而充足的采样点数则可以正确表示信号。

6. 结论

  • 奈奎斯特定理指出,为了正确恢复信号,采样频率必须至少是信号中最高频率的两倍。
  • 离散时间信号的傅里叶变换通常是连续的频谱,但我们只能对频率域进行离散采样。
  • 频域采样点数不足会导致时间域中的混叠现象,使得信号无法正确恢复。
  • 傅里叶双重性展示了时间域和频域的对称关系,时间域的离散化会导致频域的周期性,反之亦然。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值