描述
给定一个无向图,在此无向图中增加一条边。
输入
多组数据,每组m+2行。第一行有两个数字n和m,代表有n个顶点和m条边。顶点编号为1到n。第二行到第m+1行每行有两个数字h和k,代表边依附的两个顶点。第m+2行有两个数字f和g,代表增加的边所依附的两个顶点。当n和m都等于0时,输入结束。
输出
每组数据输出n行。为增加边后的邻接表。每两个数字之间用空格隔开。
输入样例 1
3 2 1 2 2 3 3 1 3 1 1 2 1 3 0 0
输出样例 1
1 3 2 2 3 1 3 1 2 1 3 2 2 1 3 1
//基于邻接表的新边的增加
#include <iostream>
#define MVNum 100
using namespace std;
typedef struct ArcNode{//边信息
int p;//顶点
ArcNode *nextarc; //下一条边
}ArcNode,*ArcList;
typedef struct VNode{//顶点信息
int name;//存储顶点的代号
ArcNode *ArcList;//指向第一条依附于他的边
}VNode,AdjList[MVNum];//如果此处用链表不好随时调用某顶点的信息
typedef struct{
AdjList vertices;//图的本体
int vexnum,arcnum;//图的当前顶点数和边数
}ALGraph;
void Create_V(ALGraph &G,int name){//构造顶点 输入逻辑地址
int pos=++G.vexnum;
G.vertices[pos-1].name=name;//vexnum是逻辑地址,所以-1
G.vertices[pos-1].ArcList=NULL;
}
void Create_Arc(ALGraph &G,int h,int k){//构造边
int posh=0,posk=0;
for(int i=1;i<=G.vexnum;i++){//查找左右顶点的逻辑地址
if(h==G.vertices[i-1].name) posh=i;
if(k==G.vertices[i-1].name) posk=i;
}
if(posh*posk==0) return;//此处删去也行 题目没做要求 如果边的点不在图中 退出
ArcNode *ph=new ArcNode;//h的新邻接点
ArcNode *pk=new ArcNode;//p的新邻接点
ph->p=k;//p新邻接点的名字
ph->nextarc=G.vertices[posh-1].ArcList;//前插法
G.vertices[posh-1].ArcList=ph;
pk->p=h;//h新邻接点的名字
pk->nextarc=G.vertices[posk-1].ArcList;//前插法
G.vertices[posk-1].ArcList=pk;
G.arcnum++;
}
void Out_Graph(ALGraph G){//输出图
for(int i=1;i<=G.vexnum;i++){
ArcNode *p=G.vertices[i-1].ArcList;
if(!p){//第一种情况,如果没有邻接点,输出名字并进入下一层循环
cout<<G.vertices[i-1].name<<endl;
continue;
}
cout<<G.vertices[i-1].name<<" ";//第二种情况,有邻接点,输出名字+空格
while(p->nextarc){//如果下一个邻接点还有 输出邻接点名+空格
cout<<p->p<<" ";
p=p->nextarc;
}
cout<<p->p<<endl;//输出最后一个邻接点
}
}
void Calculate(int m,int n){
ALGraph G;
G.vexnum=G.arcnum=0;
for(int i=1;i<=m;i++) Create_V(G,i);//构造前n个顶点
for(int i=1;i<=n+1;i++){//构造n条边(再新增一条边 买n送1)
int h,k;
cin>>h>>k;//输入左右顶点
Create_Arc(G,h,k);//构造边
}
Out_Graph(G);//输出图
}
int main(){
int m,n;
while(cin>>m>>n&&m!=0&&n!=0){//每次处理一组数据
Calculate(m,n);
}
return 0;
}