Ubuntu20版-阿里源 deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiversedeb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multive
springboot项目结构命名规范 一级文件描述.idea存放项目的配置信息.mvn存放mvnw相关文件(在大型项目需要统一Maven版本管理中非常实用)src源文件target存放项目构建后的文件和目录、jar包、war包、编译的class文件.gitignoregit忽略规则blog.imlintellij idea的工程配置文件HELP.md帮助文档mvnw与Linux执行mvnw命令有关mvnw.cmd与Windows执行mvnw命令有关pom.xml项目对象模型(核心重要)二级。
【贝叶斯分类4】贝叶斯网 半朴素贝叶斯分类器的原理就是适当考虑一部分属性间的依赖信息。考虑策略最常用的是独依赖估计,有超夫独依赖估计(SPODE),平均独依赖估计(AODE),树增广朴素贝叶斯(TAN)。 超夫独依赖估计就是直接让所有属性都依赖同一个属性,这个被其他属性共同依赖的叫“超夫”,超夫选择不是一直是它,可以用交叉验证的方法,我们选择最好训练效果的模型。 平均独依赖估计是把每个属性当作一个SPODE模型,但P(c)P(c)P(c) 变为了P(c,xi)P(c,x_i)P(c,xi),但这个模型要求训
【贝叶斯分类3】半朴素贝叶斯分类器 我们根据贝叶斯决策论,或者说是贝叶斯分类原理,首先得到的是一个期望损失【R(ci∣x)=∑j=1NλijP(cj∣x)R(c_i|x)=\sum_{j=1}^N\lambda_{ij}P(c_j|x)R(ci∣x)=∑j=1NλijP(cj∣x)】。贝叶斯判定准则就是要让总体风险最小,从而可推到要求部分风险最小【h∗(x)=arg minc∈YR(c∣x)h^*(x)=arg\ min_{c\in Y}R(c|x)h∗(x)=arg minc∈YR(c∣x)】。 可以把ccc 看作“类别”
【贝叶斯分类2】朴素贝叶斯分类器 分类原理。Y={c1,c2,...,cN}Y = \{c_1, c_2, ..., c_N\}Y={c1,c2,...,cN} 有N种标记,λij\lambda_{ij}λij 是将一个真实标记为cjc_jcj 的样本误分类为cic_ici 所产生的损失。R(ci∣x)R(c_i|x)R(ci∣x) 是将样本xxx 分类为cic_ici 所产生的期望损失(又叫样本xxx 的条件风险)。我们已知了错误的分类标记cic_ici,我们的目的是求这个期望损失,并且要找最小。定义公式:R(ci∣
【贝叶斯分类1】贝叶斯决策论 文章目录1. 贝叶斯决策论1.1 概念1.2 期望损失(风险)1.3 贝叶斯判定准则1. 贝叶斯决策论1.1 概念- "英文:" Bayesian decision theory- "思想:" 贝叶斯决策论是概率框架下实施决策的基本方法- "原理:" 1. 在所有相关概率都己知的理想情形下, 2. 贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。1.2 期望损失(风险)概念- "英文:" expected loss- "别名:" 风险(r
【机器学习9】KNN 文章目录1. KNN算法原理2. KNN算法特点3. K值4. 数据处理4.1 KDTree4.2 数据归一化5. 算法流程6. Java代码6.1 训练集,测试集6.2 KNN.java6.3 预测1. KNN算法原理- "英文:" K-Nearest Neighbor- "思想:" 对于任意n维输入向量,分别对应于特征空间中的一个点,输出为该特征向量所对应的类别标签或预测值- "原理:" 1. 它的工作原理是利用训练数据对特征向量空间进行划分,并将划分结果作为最终算法模型 2
【聚类3】密度聚类+层次聚类 文章目录1. 密度聚类1.2 DBSCAN算法1. 密度聚类1.1 概念- "别名": 基于密度的聚类- "英文": Density-based clustering- "思想": 此类算法假设聚类结构能够通过样本分布的紧密程度确定- "解释思想": 就是说,密度聚类算法从样本的密度角度来考察样本之间的可连续性(样 本之间可连续性代表簇的纯度越纯),并基于可连续样本不断拓展聚类簇,以 获得最终的聚类结果。- "欧式距离": 在本节中,默认距离为欧式距离。
【聚类2】原型聚类 文章目录5. 原型聚类学习向量量化(接上一篇)高斯混合聚类6. 密度聚类5. 原型聚类学习向量量化(接上一篇)学习向量量化算法例子【D:】【q = 5】即,学习目标找到5个原型向量p1,p2,p3,p4,p5p_1,p_2,p_3,p_4,p_5p1,p2,p3,p4,p5令,其对应的类别标记分别为c1,c2,c3,c4,c5c_1,c_2,c_3,c_4,c_5c1,c2,c3,c4,c5【η=0.1\eta=0.1η=0.1】第一步:原型向量随机初始化第一步:
【聚类1】距离计算 文章目录1. 无监督学习2. 聚类任务3. 性能度量1. 无监督学习英文unsupervised learning概念- 在"无监督学习"中,训练样本的标记信息是未知的。- 根据类别未知(没有被标记)的训练样本解决模式识别中的各种问题,称之为"无监督学习"。目标- 希望是通过"对无标记训练样本的学习"来揭示数据的内在性质及规律,为进一步的数据分析提供基础。- "现实生活"中常常会有这样的情况:1. 缺乏足够的先验知识,"难"以人工标注类别或进行人工类别标注的成本太高。