1. 机器学习
1.1. 什么是机器学习
- Machine Learning
- 多领域交叉学科
- 它是人工智能核心,是使计算机具有智能的根本途径
- 研究机器怎样模拟或实现人类的学习行为
1.2. 涉及学科
- 概率论、统计学、逼近论
- 线性代数、高等数学等
1.3. 机器学习历史
- 演变而来。
- 追溯到17世纪,贝叶斯、拉普拉斯关于最小二乘法的推导和马尔可夫链。
- 1950年,艾伦.图灵提议建立一个学习机器。
- 1980年,在美国的卡内基梅隆(CMU)召开了第一届机器学习国际研讨会,标志着机器学习研究已在全世界兴起。
1.4. 为什么研究机器学习
1.4.1 方面一:智能:
- 一个系统是否具有学习能力已成为是否具有“智能”的一个标志。
- 研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
- 机器学习是对能通过经验自动改进的计算机算法的研究。
1.4.2 方面二:大数据:
- 大数据环境下机器学习的研究
- 该类研究主要是研究如何有效利用信息
- 注重从巨量数据中获取隐藏的、有效的、可理解的知识。
1.5. 研究现状
1.5.1 方面一:智能
- 决策树
- 决策树是机器学习常见的一种方法。
- ID3算法
- 在ID3算法的基础上提出了一种改进算法,即C4.5算法
- CART算法
- SLIQ(决策树分类)算法
- PUBLIC算法
- 随机森林
- 随机森林(RF)作为机器学习重要算法之一。
- 是一种利用多个树分类器进行分类和预测的方法。
- 人工神经网络
本文介绍了机器学习的基本概念,包括它的定义、涉及的学科、历史发展和研究现状。机器学习作为人工智能的核心,融合了概率论、统计学等多领域知识。在大数据时代,机器学习研究不断深入,出现了决策树、人工神经网络、支持向量机等算法,这些算法在智能决策和大数据处理中扮演关键角色。同时,文章也提及了未来的学习计划。
最低0.47元/天 解锁文章

9万+

被折叠的 条评论
为什么被折叠?



