机器学习1——什么是机器学习

本文介绍了机器学习的基本概念,包括它的定义、涉及的学科、历史发展和研究现状。机器学习作为人工智能的核心,融合了概率论、统计学等多领域知识。在大数据时代,机器学习研究不断深入,出现了决策树、人工神经网络、支持向量机等算法,这些算法在智能决策和大数据处理中扮演关键角色。同时,文章也提及了未来的学习计划。
摘要由CSDN通过智能技术生成

1. 机器学习

1.1. 什么是机器学习

  • Machine Learning
  • 多领域交叉学科
  • 它是人工智能核心,是使计算机具有智能的根本途径
  • 研究机器怎样模拟或实现人类的学习行为

1.2. 涉及学科

  • 概率论、统计学、逼近论
  • 线性代数、高等数学等

1.3. 机器学习历史

  • 演变而来。
  • 追溯到17世纪,贝叶斯、拉普拉斯关于最小二乘法的推导和马尔可夫链。
  • 1950年,艾伦.图灵提议建立一个学习机器。
  • 1980年,在美国的卡内基梅隆(CMU)召开了第一届机器学习国际研讨会,标志着机器学习研究已在全世界兴起。

1.4. 为什么研究机器学习

1.4.1 方面一:智能:

  • 一个系统是否具有学习能力已成为是否具有“智能”的一个标志。
  • 研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能
  • 机器学习是对能通过经验自动改进的计算机算法的研究。

1.4.2 方面二:大数据:

  • 大数据环境下机器学习的研究
  • 该类研究主要是研究如何有效利用信息
  • 注重从巨量数据中获取隐藏的、有效的、可理解的知识。

1.5. 研究现状

1.5.1 方面一:智能

  • 决策树
  1. 决策树是机器学习常见的一种方法。
  2. ID3算法
  3. 在ID3算法的基础上提出了一种改进算法,即C4.5算法
  4. CART算法
  5. SLIQ(决策树分类)算法
  6. PUBLIC算法
  • 随机森林
  1. 随机森林(RF)作为机器学习重要算法之一。
  2. 是一种利用多个树分类器进行分类和预测的方法。
  • 人工神经网络
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姜满月

鼓励,鼓励,更加努力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值