研一下第十六周论文阅读情况

一、《ReMix: A General and Efficient Framework for Multiple Instance Learning based Whole Slide Image Classification》

from:MICCAI 2022

1、Abstract:

        全滑动图像(WSI)分类经常依赖于深度弱监督多实例学习(MIL)方法来处理千兆像素分辨率的图像和幻灯片级别的标签。然而,深度学习的出色性能来自于利用大规模数据集和多样化的样本,这迫切需要有效的训练流程以扩展至大型数据集,以及数据增强技术来多样化样本。然而,当前的基于MIL的WSI分类流程通常是内存密集型和计算效率低下的,因为它们通常将数万个图像块组合成包进行计算。另一方面,尽管数据增强在其他任务中很受欢迎,但在WSI MIL框架中却尚未得到充分探索。为了解决这些问题,我们提出了ReMix,一个基于MIL的WSI分类的通用且高效的框架。它包含两个步骤:减少和混合。首先,它通过用实例原型(即补丁聚类中心)替换实例来减少WSI包中的实例数量。然后,我们提出了一种“Mix-the-bag”增强方法,它包含四种在线、随机和灵活的潜在空间增强技术。这种方法在潜在空间中引入多样化和可靠的类身份保持语义变化,同时强制语义扰动的不变性。我们使用两种最先进的MIL方法在两个公开数据集上评估了ReMix。在我们的实验中,实现了精度、准确率和召回率的持续改进,但训练时间和内存消耗却大幅减少,这证明了ReMix的有效性和效率。

2、Conclusion:

这项工作介绍了ReMix,一个基于多实例学习(MIL)的全滑动图像(WSI)分类的通用且高效的框架。

提出一种通用、简单但有效的方法,以提高基于多实例学习(MIL)的全滑动图像(WSI)分类框架的训练效率。

提出一种新颖且高效的基于MIL的WSI分类的潜在空间增强方法,这在现有工作中鲜有探索。

在两个公共数据集上,以可观的幅度改进先前的最先进的MIL方法,但将预算降低了几个数量级。

ReMix通过用实例原型替换实例来减少WSI包中的实例数量,并通过潜在空间增强方法来混合包以提高数据多样性。我们的ReMix可以显著改进先前的最先进的MIL分类方法,同时以更快的训练速度和更少的内存消耗展现了其有效性和效率。

3、Result:

二、《RankMix: Data Augmentation for Weakly Supervised Learning of Classifying Whole Slide Images with Diverse Sizes and Imbalanced Categories》

1、Abstract:

        全滑动图像(WSI)通常具有数十亿像素的大小,并且缺乏像素级别的标注。WSI数据集在类别上也不平衡。这些独特的特性与自然图像中的特性显著不同,给WSI图像分类带来了一种弱监督学习问题的挑战。在这项研究中,我们提出了RankMix,一种在成对的WSI中混合排名特征的数据增强方法。RankMix引入了伪标签和排名的概念,以提取对WSI分类任务有贡献的关键WSI区域。进一步提出了两阶段训练策略,以提高训练的稳定性和模型性能。

        据我们所知,从数据增强的角度研究弱监督学习,以处理因训练数据不足和类别不平衡而受困扰的WSI分类问题,这方面的研究相对较少。

2、Conclusion:

        在这项工作中,我们从数据增强的角度研究了弱监督学习,以处理因训练数据不足和类别不平衡而受困扰的全滑动图像(WSI)分类问题。

        据我们所知,MIL目前专注于改进特征提取和基于聚合器的分类。在从数据增强的角度研究弱监督学习时,它相对被忽视。我们提出的方法可以应用于WSI分类问题,并且可以很容易地与现有的MIL方法相结合。

        与现有混合方法的目的是混合相同大小的自然图像相比,我们的方法可以混合不同大小的图像(例如wsi)。

        由于罕见病和医学图像采集难度大,WSI分类问题容易出现训练数据不足和分类不平衡的问题。我们提出的方法被证明是解决这些挑战的可行方法。

        我们提出了一种新的数据增强方法,名为RankMix,用于混合不同大小WSI对中的排名特征。RankMix通过伪标签和排名来提取关键的WSI区域,并采用两阶段训练策略来提高训练的稳定性和模型性能。

3、Result:

三、《Pseudo-Bag Mixup Augmentation for Multiple Instance Learning-Based Whole Slide Image

Classification

1、Abstract:

鉴于建模千兆像素图像的特殊情况,多实例学习(MIL)已成为全幻灯片图像(WSI)分类的最重要框架之一。在目前的实践中,大多数MIL网络在训练过程中常常面临两个不可避免的问题:i) WSI数据不足;ii) 神经网络固有的样本记忆倾向。这些问题可能会阻碍MIL模型进行充分和有效的训练,抑制分类模型在WSI上的性能持续提升。受Mixup基本思想的启发,本文提出了一种新的伪袋Mixup(PseMix)数据增强方案,以改进MIL模型的训练。该方案通过伪袋将Mixup策略从一般图像推广到特殊的WSI,以便应用于基于MIL的WSI分类。借助伪袋,我们的PseMix实现了Mixup策略中的关键尺寸对齐和语义对齐。此外,它被设计为一种高效且解耦的方法,既不涉及耗时操作,也不依赖于MIL模型预测。特别设计了比较实验和消融研究来评估我们PseMix的有效性和优势。实验结果表明,PseMix通常可以帮助最先进的MIL网络刷新其在WSI上的分类性能。此外,它还可以提高MIL模型在特殊测试场景中的泛化性能,并提升它们对补丁遮挡和标签噪声的鲁棒性。

2、Conclusivvon:

本文提出了一种针对基于多实例学习(MIL)的全幻灯片图像(WSI)分类的伪袋Mixup(PseMix)数据增强方案。该方案利用伪袋概念来实现Mixup对齐,从而将Mixup的基本思想从普通图像推广到特殊的WSI。该方案与大多数流行的MIL网络兼容。此外,它高效且即插即用,既不涉及耗时操作,也不依赖于MIL模型的预测。通过比较实验和消融研究,证实PseMix是WSI分类中有效的Mixup变体。它通常能够提升MIL模型的性能,并在整体性能上优于其他相关的混合策略。除此之外,观察到MIL模型在多个其他方面也可以从PseMix中受益更多,如泛化差距、中间数据泛化、补丁遮挡鲁棒性和标签噪声鲁棒性。在未来,我们的PseMix可以作为一种有前景的数据增强方法,帮助开发具有更好泛化和鲁棒性的WSI分类模型,用于临床病理学诊断。

3、Result:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值