洛谷 P2615 神奇的幻方

博客内容讲述了在解决洛谷P2615问题时,涉及二维数组赋值的思路和一个易错点——代码中多了一个分号,导致额外花费了50多分钟的问题分析。
#include <stdio.h>
#include <stdlib.h>

int main()
{
    int i = 0,n,t,j,k,m,x = 1,cnt,flag;
    char ch;
    scanf("%d",&n);
    m = n * n;
    //int a[n][n] = {0,0};
    int a[39][39] = {0,0};
    j = n / 2;
    a[i][j] = x;
    for(k = 1;k < m;++k){
        ++x;
        cnt = 0;
        flag = 1;
        if(flag == 1)
        for(t = 0;t < n - 1;++t){
            if(a[0][t] == (x - 1)){
                i = n - 1;
                j++;
                a[i][j] = x;
                flag = 0;
//                printf("sss");
                break;
            }
        }//printf("%d %d %d %d\n",a[i][j],x,i,j);
        if(flag == 1)
        for(t = 1;t < n;++t){
            if(a[t][n - 1] == x - 1){
                i--;
                j = 0;
                a[i][j] = x;
//                printf("%d ",a[i][j]);
                flag = 0;
                break;
            }
        }
        if(flag == 1)
        if(a[0][n - 1] == x - 1){
            i++;
            j = n - 1;
            a[i][j] = x;
            flag = 0;
//            printf("%d ",a[i][j]);
        }
        if(flag == 1){
        for(t = 0;t < n;++t){
            if(a[0][t] == x - 1){
                cnt++;
                break;
            }
        }
        for(t = 0;t < n;++t){
            if(a[t][n - 1] == x - 1){
                cnt++;
                break;
            }
        }
        if(cnt == 0 && a[i - 1][j + 1] == 0){
            i--;
            j++;
            a[i][j] = x;
//            printf("%d ",a[i][j]);
        }
        else if(cnt == 0 && a[i - 1][j + 1] != 0){
            i++;
            a[i][j] = x;
//            printf("%d ",a[i][j]);
        }
        }
    }
       // printf("%d",k);
    for(i = 0;i < n;i++){
        for(j = 0;j < n;j++){
            printf("%d",a[i][j]);
            printf("%c",ch = (j == n - 1) ? '\n' : ' ');
        }
    }
    return 0;
}

二维数组不断赋值
思路不难
for(t = 0;t < n - 1;++t);{}
多打了一个分号,恰好这个地方不会报错,多花了50多分钟。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值