(三)矢量指标升降关系与坐标转换关系

1. 指标升降关系:

1.1. 基矢量的指标升降关系

在讲述协(逆)变基矢时,我们曾得到如下两个关系式: g ⃗ i = g i j g ⃗ j   g ⃗ i = g i j g ⃗ j \vec{g}^i=g^{ij}\vec{g}_j\\\ \\\vec{g}_i=g_{ij}\vec{g}^j g i=gijg j g i=gijg j将其称为基矢量的坐标升降关系

1.2. 矢量分量的指标升降关系

下面讲述矢量分量的指标升降关系。任意矢量 v ⃗ \vec{v} v 既可以对协变基矢构成的基进行分解,也可以对逆变基矢构成的基进行分解,即: v ⃗ = p i g ⃗ i = p i g ⃗ i \vec{v}=p^i\vec{g}_i=p_i\vec{g}^i v =pig i=pig i分别将 p i p^i pi p i p_i pi 称作矢量的逆变分量与协变分量,且有
p i = ( v ⃗ , g ⃗ i ) = ( p j g ⃗ j , g ⃗ i ) = p j ( g ⃗ j , g ⃗ i ) = p j g i j   p i = ( v ⃗ , g ⃗ i ) = ( p j g ⃗ j , g ⃗ i ) = p j ( g ⃗ j , g ⃗ i ) = p j g i j p^i=(\vec{v},\vec{g}^i)=(p_j\vec{g}^j,\vec{g}^i)=p_j(\vec{g}^j,\vec{g}^i)=p_jg^{ij}\\\ \\ p_i=(\vec{v},\vec{g}_i)=(p^j\vec{g}_j,\vec{g}_i)=p^j(\vec{g}_j,\vec{g}_i)=p^jg_{ij} pi=(v ,g i)=(pjg j,g i)=pj(g j,g i)=pjgij pi=(v ,g i)=(pjg j,g i)=pj(g j,g i)=pjgij对比发现,矢量的协变分量和逆变分量之间的指标升降关系与协变基矢和逆变基矢的指标升降关系形式上完全相同,起到升指标作用的是度量张量的逆变分量,起到降指标作用的是度量张量的协变分量。

2. 坐标转换关系:

2.1. 基矢量的坐标转换关系

设有旧曲线坐标系 x i x^i xi与新曲线坐标系 x i ′ x^{i'} xi且二者是一对一的映射。对于空间中任意一点而言存在四组基,即新旧坐标系的协(逆)变基矢构成的向量组。要建立起四者相互转换的关系只需要讨论新坐标系的协(逆)变基矢与旧坐标系的协(逆)变基矢间的转化关系,因为同一坐标系下的协变基矢与逆变基矢的关系已由指标升降关系给出。将新坐标系的协(逆)变基矢分别向旧坐标系的协(逆)变基矢进行分解:
[ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] = [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] ⟺ g ⃗ i ′ = β i ′ j g ⃗ j ( i ′ = 1 ′ , 2 ′ , 3 ′ ; j = 1 , 2 , 3 ) ( 1 )   [ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] = [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] [ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] T ⟺ g ⃗ i ′ = β j i ′ g ⃗ j ( i ′ = 1 ′ , 2 ′ , 3 ′ ; j = 1 , 2 , 3 ) ( 2 ) \begin{bmatrix}\vec{g}_{1'}&\vec{g}_{2'}&\vec{g}_{3'}\end{bmatrix} =\begin{bmatrix}\vec{g}_{1}&\vec{g}_{2}&\vec{g}_{3}\end{bmatrix} \begin{bmatrix} %%%%%%% \beta^{1}_{1'}&\beta^{1}_{2'}&\beta^{1}_{3'}\\ \\ \beta^{2}_{1'}&\beta^{2}_{2'}&\beta^{2}_{3'}\\ \\ \beta^{3}_{1'}&\beta^{3}_{2'}&\beta^{3}_{3'} \end{bmatrix} \Longleftrightarrow \vec{g}_{i'}=\beta_{i'}^j\vec{g}_j\quad(i'=1',2',3';j=1,2,3)\qquad(1) \\\ \\ \begin{bmatrix}\vec{g}^{1'}&\vec{g}^{2'}&\vec{g}^{3'}\end{bmatrix} =\begin{bmatrix}\vec{g}^{1}&\vec{g}^{2}&\vec{g}^{3}\end{bmatrix} \begin{bmatrix} %%%%%%% \beta^{1'}_{1}&\beta^{1'}_{2}&\beta^{1'}_{3}\\ \\ \beta^{2'}_{1}&\beta^{2'}_{2}&\beta^{2'}_{3}\\ \\ \beta^{3'}_{1}&\beta^{3'}_{2}&\beta^{3'}_{3} \end{bmatrix}^T \Longleftrightarrow \vec{g}^{i'}=\beta_{j}^{i'}\vec{g}^j\quad(i'=1',2',3';j=1,2,3)\qquad(2) [g 1g 2g 3]=[g 1g 2g 3] β11β12β13β21β22β23β31β32β33 g i=βijg j(i=1,2,3j=1,2,3)(1) [g 1g 2g 3]=[g 1g 2g 3] β11β12β13β21β22β23β31β32β33 Tg i=βjig j(i=1,2,3j=1,2,3)(2) β i ′ j \beta_{i'}^j βij β j i ′ \beta_{j}^{i'} βji分别称作协变转换系数,逆变转换系数(看新坐标系的指标),由对偶条件:
[ δ j ′ i ′ ] = [ δ 1 ′ 1 ′ δ 2 ′ 1 ′ δ 3 ′ 1 ′ δ 1 ′ 2 ′ δ 2 ′ 2 ′ δ 3 ′ 2 ′ δ 1 ′ 3 ′ δ 2 ′ 3 ′ δ 3 ′ 3 ′ ] = [ ( g ⃗ 1 ′ , g ⃗ 1 ′ ) ( g ⃗ 1 ′ , g ⃗ 2 ′ ) ( g ⃗ 1 ′ , g ⃗ 3 ′ ) ( g ⃗ 2 ′ , g ⃗ 1 ′ ) ( g ⃗ 2 ′ , g ⃗ 2 ′ ) ( g ⃗ 2 ′ , g ⃗ 3 ′ ) ( g ⃗ 3 ′ , g ⃗ 1 ′ ) ( g ⃗ 3 ′ , g ⃗ 2 ′ ) ( g ⃗ 3 ′ , g ⃗ 3 ′ ) ] = [ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] T [ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] = [ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] T [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] = [ ( g ⃗ 1 ′ , g ⃗ 1 ′ ) ( g ⃗ 1 ′ , g ⃗ 2 ′ ) ( g ⃗ 1 ′ , g ⃗ 3 ′ ) ( g ⃗ 2 ′ , g ⃗ 1 ′ ) ( g ⃗ 2 ′ , g ⃗ 2 ′ ) ( g ⃗ 2 ′ , g ⃗ 3 ′ ) ( g ⃗ 3 ′ , g ⃗ 1 ′ ) ( g ⃗ 3 ′ , g ⃗ 2 ′ ) ( g ⃗ 3 ′ , g ⃗ 3 ′ ) ] = [ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] T [ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] = [ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] T [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] = [ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] [\delta^{i'}_{j'}] =\begin{bmatrix}%%%%% \delta^{1'}_{1'}&\delta^{1'}_{2'}&\delta^{1'}_{3'}\\ \\ \delta^{2'}_{1'}&\delta^{2'}_{2'}&\delta^{2'}_{3'}\\ \\ \delta^{3'}_{1'}&\delta^{3'}_{2'}&\delta^{3'}_{3'}\\ \end{bmatrix} =\begin{bmatrix}%%%%% (\vec{g}^{1'},\vec{g}_{1'})&(\vec{g}^{1'},\vec{g}_{2'})&(\vec{g}^{1'},\vec{g}_{3'})\\ \\ (\vec{g}^{2'},\vec{g}_{1'})&(\vec{g}^{2'},\vec{g}_{2'})&(\vec{g}^{2'},\vec{g}_{3'})\\ \\ (\vec{g}^{3'},\vec{g}_{1'})&(\vec{g}^{3'},\vec{g}_{2'})&(\vec{g}^{3'},\vec{g}_{3'})\\ \end{bmatrix} =\begin{bmatrix}\vec{g}^{1'}&\vec{g}^{2'}&\vec{g}^{3'}\end{bmatrix}^T%%%%%% \begin{bmatrix}\vec{g}_{1'}&\vec{g}_{2'}&\vec{g}_{3'}\end{bmatrix}%%%%%%%%%%%% =\begin{bmatrix} %%%%%%% \beta^{1'}_{1}&\beta^{1'}_{2}&\beta^{1'}_{3}\\ \\ \beta^{2'}_{1}&\beta^{2'}_{2}&\beta^{2'}_{3}\\ \\ \beta^{3'}_{1}&\beta^{3'}_{2}&\beta^{3'}_{3} \end{bmatrix} \begin{bmatrix}\vec{g}^{1}&\vec{g}^{2}&\vec{g}^{3}\end{bmatrix}^T%%%%%%%% \begin{bmatrix}\vec{g}_{1}&\vec{g}_{2}&\vec{g}_{3}\end{bmatrix}%%%%%%% \begin{bmatrix} %%%%%%% \beta^{1}_{1'}&\beta^{1}_{2'}&\beta^{1}_{3'}\\ \\ \beta^{2}_{1'}&\beta^{2}_{2'}&\beta^{2}_{3'}\\ \\ \beta^{3}_{1'}&\beta^{3}_{2'}&\beta^{3}_{3'} \end{bmatrix} =\begin{bmatrix}%%%%% (\vec{g}^{1'},\vec{g}_{1'})&(\vec{g}^{1'},\vec{g}_{2'})&(\vec{g}^{1'},\vec{g}_{3'})\\ \\ (\vec{g}^{2'},\vec{g}_{1'})&(\vec{g}^{2'},\vec{g}_{2'})&(\vec{g}^{2'},\vec{g}_{3'})\\ \\ (\vec{g}^{3'},\vec{g}_{1'})&(\vec{g}^{3'},\vec{g}_{2'})&(\vec{g}^{3'},\vec{g}_{3'})\\ \end{bmatrix} =\begin{bmatrix}\vec{g}^{1'}&\vec{g}^{2'}&\vec{g}^{3'}\end{bmatrix}^T%%%%%% \begin{bmatrix}\vec{g}_{1'}&\vec{g}_{2'}&\vec{g}_{3'}\end{bmatrix}%%%%%%%%%%%% =\begin{bmatrix} %%%%%%% \beta^{1'}_{1}&\beta^{1'}_{2}&\beta^{1'}_{3}\\ \\ \beta^{2'}_{1}&\beta^{2'}_{2}&\beta^{2'}_{3}\\ \\ \beta^{3'}_{1}&\beta^{3'}_{2}&\beta^{3'}_{3} \end{bmatrix} \begin{bmatrix}\vec{g}^{1}&\vec{g}^{2}&\vec{g}^{3}\end{bmatrix}^T%%%%%%%% \begin{bmatrix}\vec{g}_{1}&\vec{g}_{2}&\vec{g}_{3}\end{bmatrix}%%%%%%% \begin{bmatrix} %%%%%%% \beta^{1}_{1'}&\beta^{1}_{2'}&\beta^{1}_{3'}\\ \\ \beta^{2}_{1'}&\beta^{2}_{2'}&\beta^{2}_{3'}\\ \\ \beta^{3}_{1'}&\beta^{3}_{2'}&\beta^{3}_{3'} \end{bmatrix} =\begin{bmatrix} %%%%%%% \beta^{1'}_{1}&\beta^{1'}_{2}&\beta^{1'}_{3}\\ \\ \beta^{2'}_{1}&\beta^{2'}_{2}&\beta^{2'}_{3}\\ \\ \beta^{3'}_{1}&\beta^{3'}_{2}&\beta^{3'}_{3} \end{bmatrix} \begin{bmatrix} %%%%%%% \beta^{1}_{1'}&\beta^{1}_{2'}&\beta^{1}_{3'}\\ \\ \beta^{2}_{1'}&\beta^{2}_{2'}&\beta^{2}_{3'}\\ \\ \beta^{3}_{1'}&\beta^{3}_{2'}&\beta^{3}_{3'} \end{bmatrix} [δji]= δ11δ12δ13δ21δ22δ23δ31δ32δ33 = (g 1,g 1)(g 2,g 1)(g 3,g 1)(g 1,g 2)(g 2,g 2)(g 3,g 2)(g 1,g 3)(g 2,g 3)(g 3,g 3) =[g 1g 2g 3]T[g 1g 2g 3]= β11β12β13β21β22β23β31β32β33 [g 1g 2g 3]T[g 1g 2g 3] β11β12β13β21β22β23β31β32β33 = (g 1,g 1)(g 2,g 1)(g 3,g 1)(g 1,g 2)(g 2,g 2)(g 3,g 2)(g 1,g 3)(g 2,g 3)(g 3,g 3) =[g 1g 2g 3]T[g 1g 2g 3]= β11β12β13β21β22β23β31β32β33 [g 1g 2g 3]T[g 1g 2g 3] β11β12β13β21β22β23β31β32β33 = β11β12β13β21β22β23β31β32β33 β11β12β13β21β22β23β31β32β33 上式说明:协变转换系数矩阵与逆变转换系数矩阵互逆,即 β i k ′ β j ′ i = δ j ′ k ′ , [ β j i ′ ] − 1 = [ β j ′ i ] \beta^{k'}_{i}\beta^{i}_{j'}=\delta^{k'}_{j'},[\beta^{i'}_j]^{-1}=[\beta^{i}_{j'}] βikβji=δjk[βji]1=[βji]同样的旧坐标系的协(逆)变基矢可对新坐标系的协(逆)变基矢进行分解,且由式(1)(2)知应有:
[ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] = [ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] − 1 = [ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] [ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] ⟺ g ⃗ j = β j i ′ g ⃗ i ′ ( i ′ = 1 , 2 , 3 ; j = 1 , 2 , 3 ) ( 3 )   [ g ⃗ 1 g ⃗ 2 g ⃗ 3 ] = [ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] ( [ β 1 1 ′ β 2 1 ′ β 3 1 ′ β 1 2 ′ β 2 2 ′ β 3 2 ′ β 1 3 ′ β 2 3 ′ β 3 3 ′ ] T ) − 1 = [ g ⃗ 1 ′ g ⃗ 2 ′ g ⃗ 3 ′ ] [ β 1 ′ 1 β 2 ′ 1 β 3 ′ 1 β 1 ′ 2 β 2 ′ 2 β 3 ′ 2 β 1 ′ 3 β 2 ′ 3 β 3 ′ 3 ] T ⟺ g ⃗ j = β i ′ j g ⃗ i ′ ( i ′ = 1 , 2 , 3 ; j = 1 , 2 , 3 ) ( 4 ) \begin{bmatrix}\vec{g}_{1}&\vec{g}_{2}&\vec{g}_{3}\end{bmatrix} =\begin{bmatrix}\vec{g}_{1'}&\vec{g}_{2'}&\vec{g}_{3'}\end{bmatrix} \begin{bmatrix} %%%%%%% \beta^{1}_{1'}&\beta^{1}_{2'}&\beta^{1}_{3'}\\ \\ \beta^{2}_{1'}&\beta^{2}_{2'}&\beta^{2}_{3'}\\ \\ \beta^{3}_{1'}&\beta^{3}_{2'}&\beta^{3}_{3'} \end{bmatrix}^{-1} =\begin{bmatrix}\vec{g}_{1'}&\vec{g}_{2'}&\vec{g}_{3'}\end{bmatrix}%%%% \begin{bmatrix} %%%%%%% \beta^{1'}_{1}&\beta^{1'}_{2}&\beta^{1'}_{3}\\ \\ \beta^{2'}_{1}&\beta^{2'}_{2}&\beta^{2'}_{3}\\ \\ \beta^{3'}_{1}&\beta^{3'}_{2}&\beta^{3'}_{3} \end{bmatrix}\Longleftrightarrow \vec{g}_j=\beta^{i'}_{j}\vec{g}_{i'}\quad(i'=1,2,3;j=1,2,3)\qquad(3) \\\ \\ \begin{bmatrix}\vec{g}^{1}&\vec{g}^{2}&\vec{g}^{3}\end{bmatrix} =\begin{bmatrix}\vec{g}^{1'}&\vec{g}^{2'}&\vec{g}^{3'}\end{bmatrix} \left(\begin{bmatrix} %%%%%%% \beta^{1'}_{1}&\beta^{1'}_{2}&\beta^{1'}_{3}\\ \\ \beta^{2'}_{1}&\beta^{2'}_{2}&\beta^{2'}_{3}\\ \\ \beta^{3'}_{1}&\beta^{3'}_{2}&\beta^{3'}_{3} \end{bmatrix}^T\right)^{-1} =\begin{bmatrix}\vec{g}^{1'}&\vec{g}^{2'}&\vec{g}^{3'}\end{bmatrix}%%%% \begin{bmatrix} %%%%%%% \beta^{1}_{1'}&\beta^{1}_{2'}&\beta^{1}_{3'}\\ \\ \beta^{2}_{1'}&\beta^{2}_{2'}&\beta^{2}_{3'}\\ \\ \beta^{3}_{1'}&\beta^{3}_{2'}&\beta^{3}_{3'} \end{bmatrix}^T\Longleftrightarrow \vec{g}^{j}=\beta^{j}_{i'}\vec{g}^{i'}\quad(i'=1,2,3;j=1,2,3)\qquad(4) [g 1g 2g 3]=[g 1g 2g 3] β11β12β13β21β22β23β31β32β33 1=[g 1g 2g 3] β11β12β13β21β22β23β31β32β33 g j=βjig i(i=1,2,3j=1,2,3)(3) [g 1g 2g 3]=[g 1g 2g 3] β11β12β13β21β22β23β31β32β33 T 1=[g 1g 2g 3] β11β12β13β21β22β23β31β32β33 Tg j=βijg i(i=1,2,3j=1,2,3)(4)式(1)(2)(3)(4)称作基矢量的坐标变换关系

下图为四组基之间的相互转换关系:
四组基间的相互转换

2.2. 坐标转换系数

从上述讨论不难得知:协(逆)变转换系数可由不同坐标系下的协变基矢与逆变基矢的点积得到,即
( g ⃗ j , g ⃗ i ′ ) = ( g ⃗ j , β k i ′ g ⃗ k ) = β k i ′ ( g ⃗ j , g ⃗ k ) = β k i ′ δ j k = β j i ′ ⟹ β j i ′ = ( g ⃗ j , g ⃗ i ′ ) ( i ′ = 1 , 2 , 3 ; j = 1 , 2 , 3 )   ( g ⃗ i ′ , g ⃗ j ) = ( β i ′ k g ⃗ k , g ⃗ j ) = β i ′ k ( g ⃗ k , g ⃗ j ) = β i ′ k δ k j = β i ′ j ⟹ β i ′ j = ( g ⃗ i ′ , g ⃗ j ) ( i ′ = 1 , 2 , 3 ; j = 1 , 2 , 3 ) (\vec{g}_j,\vec{g}^{i'})=(\vec{g}_j,\beta^{i'}_k\vec{g}^{k})=\beta^{i'}_k(\vec{g}_j,\vec{g}^{k})=\beta^{i'}_k\delta^k_j=\beta^{i'}_j\Longrightarrow \beta^{i'}_j=(\vec{g}_j,\vec{g}^{i'})\quad(i'=1,2,3;j=1,2,3)\\\ \\ (\vec{g}_{i'},\vec{g}^{j})=(\beta_{i'}^k\vec{g}_{k},\vec{g}^j)=\beta_{i'}^k(\vec{g}_k,\vec{g}^{j})=\beta_{i'}^k\delta^j_k=\beta_{i'}^j\Longrightarrow \beta_{i'}^j=(\vec{g}_{i'},\vec{g}^{j})\quad(i'=1,2,3;j=1,2,3) (g j,g i)=(g j,βkig k)=βki(g j,g k)=βkiδjk=βjiβji=(g j,g i)(i=1,2,3j=1,2,3) (g i,g j)=(βikg k,g j)=βik(g k,g j)=βikδkj=βijβij=(g i,g j)(i=1,2,3j=1,2,3)此外,还可以通过新旧坐标系间的映射关系求得协(逆)变转换系数:

以直角坐标系为过渡: x i ′ ( x ( x j ) , y ( x j ) , z ( x j ) ) x^{i'}(x(x^j),y(x^j),z(x^j)) xi(x(xj),y(xj),z(xj)) x j ( x ( x i ′ ) , y ( x i ′ ) , z ( x i ′ ) ) x^j(x(x^{i'}),y(x^{i'}),z(x^{i'})) xj(x(xi),y(xi),z(xi))
β j i ′ = ( g ⃗ j , g ⃗ i ′ ) = ( ∂ x ∂ x j i ⃗ + ∂ y ∂ x j j ⃗ + ∂ z ∂ x j k ⃗ ) ∙ ( ∂ x i ′ ∂ x i ⃗ + ∂ x i ′ ∂ y j ⃗ + ∂ x i ′ ∂ z k ⃗ ) = ∂ x ∂ x j ∂ x i ′ ∂ x + ∂ y ∂ x j ∂ x i ′ ∂ y + ∂ z ∂ x j ∂ x i ′ ∂ z = ∂ x i ′ ∂ x j   β i ′ j = ( g ⃗ i ′ , g ⃗ j ) = ( ∂ x ∂ x i ′ i ⃗ + ∂ y ∂ x i ′ j ⃗ + ∂ z ∂ x i ′ k ⃗ ) ∙ ( ∂ x j ∂ x i ⃗ + ∂ x j ∂ y j ⃗ + ∂ x j ∂ z k ⃗ ) = ∂ x ∂ x i ′ ∂ x j ∂ x + ∂ y ∂ x i ′ ∂ x j ∂ y + ∂ z ∂ x i ′ ∂ x j ∂ z = ∂ x j ∂ x i ′ \beta^{i'}_j=(\vec{g}_j,\vec{g}^{i'})=\left(\dfrac{\partial x}{\partial x^j}\vec{i}+\dfrac{\partial y}{\partial x^j}\vec{j}+\dfrac{\partial z}{\partial x^j}\vec{k}\right)\bullet\left(\dfrac{\partial x^{i'}}{\partial x}\vec{i}+\dfrac{\partial x^{i'}}{\partial y}\vec{j}+\dfrac{\partial x^{i'}}{\partial z}\vec{k}\right) =\dfrac{\partial x}{\partial x^j}\dfrac{\partial x^{i'}}{\partial x}+\dfrac{\partial y}{\partial x^j}\dfrac{\partial x^{i'}}{\partial y}+\dfrac{\partial z}{\partial x^j}\dfrac{\partial x^{i'}}{\partial z}=\dfrac{\partial x^{i'}}{\partial x^{j}}\\\ \\ \beta_{i'}^j=(\vec{g}_{i'},\vec{g}^j)=\left(\dfrac{\partial x}{\partial x^{i'}}\vec{i}+\dfrac{\partial y}{\partial x^{i'}}\vec{j}+\dfrac{\partial z}{\partial x^{i'}}\vec{k}\right)\bullet\left(\dfrac{\partial x^{j}}{\partial x}\vec{i}+\dfrac{\partial x^{j}}{\partial y}\vec{j}+\dfrac{\partial x^{j}}{\partial z}\vec{k}\right) =\dfrac{\partial x}{\partial x^{i'}}\dfrac{\partial x^{j}}{\partial x}+\dfrac{\partial y}{\partial x^{i'}}\dfrac{\partial x^{j}}{\partial y}+\dfrac{\partial z}{\partial x^{i'}}\dfrac{\partial x^{j}}{\partial z}=\dfrac{\partial x^{j}}{\partial x^{i'}} βji=(g j,g i)=(xjxi +xjyj +xjzk )(xxii +yxij +zxik )=xjxxxi+xjyyxi+xjzzxi=xjxi βij=(g i,g j)=(xixi +xiyj +xizk )(xxji +yxjj +zxjk )=xixxxj+xiyyxj+xizzxj=xixj

2.3. 矢量分量的坐标转换关系

由于 v ⃗ = p i g ⃗ i = p i ′ g ⃗ i ′ = p i g ⃗ i = p i ′ g ⃗ i ′ \vec{v}=p^{i}\vec{g}_i=p^{i'}\vec{g}_{i'}=p_{i}\vec{g}^i=p_{i'}\vec{g}^{i'} v =pig i=pig i=pig i=pig i ( p j g ⃗ j , g ⃗ i ) = p j ( g ⃗ j , g ⃗ i ) = p j δ j i = p i = ( p j ′ g ⃗ j ′ , g ⃗ i ) = p j ′ ( g ⃗ j ′ , g ⃗ i ) = p j ′ β j ′ i ⟹ p i = β j ′ i p j ′ ( i = 1 , 2 , 3 ; j ′ = 1 , 2 , 3 )   ( p j g ⃗ j , g ⃗ i ) = p j ( g ⃗ j , g ⃗ i ) = p j δ i j = p i = ( p j ′ g ⃗ j ′ , g ⃗ i ) = p j ′ ( g ⃗ j ′ , g ⃗ i ) = p j ′ β i j ′ ⟹ p i = β i j ′ p j ′ ( i = 1 , 2 , 3 ; j ′ = 1 , 2 , 3 )   ( p j ′ g ⃗ j ′ , g ⃗ i ′ ) = p j ′ ( g ⃗ j ′ , g ⃗ i ′ ) = p j ′ δ j ′ i ′ = p i ′ = ( p j g ⃗ j , g ⃗ i ′ ) = p j ( g ⃗ j , g ⃗ i ′ ) = p j β j i ′ ⟹ p i ′ = β j i ′ p j ( i ′ = 1 , 2 , 3 ; j = 1 , 2 , 3 )   ( p j ′ g ⃗ j ′ , g ⃗ i ′ ) = p j ′ ( g ⃗ j ′ , g ⃗ i ′ ) = p j ′ δ i ′ j ′ = p i ′ = ( p j g ⃗ j , g ⃗ i ′ ) = p j ( g ⃗ j , g ⃗ i ′ ) = p j β i ′ j ⟹ p i ′ = β i ′ j p j ( i ′ = 1 , 2 , 3 ; j = 1 , 2 , 3 ) (p^{j}\vec{g}_j,\vec{g}^i)%%%%%%%%%%%%%%% =p^{j}(\vec{g}_j,\vec{g}^i) =p^{j}\delta^i_j =p^{i} =(p^{j'}\vec{g}_{j'},\vec{g}^i) =p^{j'}(\vec{g}_{j'},\vec{g}^i) =p^{j'}\beta_{j'}^i \Longrightarrow p^i=\beta^i_{j'}p^{j'}\quad(i=1,2,3;j'=1,2,3) \\ \ \\ (p_{j}\vec{g}^j,\vec{g}_i)%%%%%%%%%%%%% =p_{j}(\vec{g}^j,\vec{g}_i) =p_{j}\delta_i^j =p_{i} =(p_{j'}\vec{g}^{j'},\vec{g}_i) =p_{j'}(\vec{g}^{j'},\vec{g}_i) =p_{j'}\beta^{j'}_i \Longrightarrow p_i=\beta_i^{j'}p_{j'}\quad(i=1,2,3;j'=1,2,3) \\ \ \\ (p^{j'}\vec{g}_{j'},\vec{g}^{i'})%%%%%%%%%%%%%%% =p^{j'}(\vec{g}_{j'},\vec{g}^{i'}) =p^{j'}\delta^{i'}_{j'} =p^{i'} =(p^{j}\vec{g}_{j},\vec{g}^{i'}) =p^{j}(\vec{g}_{j},\vec{g}^{i'}) =p^{j}\beta_{j}^{i'} \Longrightarrow p^{i'}=\beta^{i'}_{j}p^{j}\quad(i'=1,2,3;j=1,2,3) \\ \ \\ (p_{j'}\vec{g}^{j'},\vec{g}_{i'})%%%%%%%%%%%%% =p_{j'}(\vec{g}^{j'},\vec{g}_{i'}) =p_{j'}\delta_{i'}^{j'} =p_{i'} =(p_{j}\vec{g}^{j},\vec{g}_{i'}) =p_{j}(\vec{g}^{j},\vec{g}_{i'}) =p_{j}\beta^{j}_{i'} \Longrightarrow p_{i'}=\beta_{i'}^{j}p_{j}\quad(i'=1,2,3;j=1,2,3) (pjg j,g i)=pj(g j,g i)=pjδji=pi=(pjg j,g i)=pj(g j,g i)=pjβjipi=βjipj(i=1,2,3;j=1,2,3) (pjg j,g i)=pj(g j,g i)=pjδij=pi=(pjg j,g i)=pj(g j,g i)=pjβijpi=βijpj(i=1,2,3;j=1,2,3) (pjg j,g i)=pj(g j,g i)=pjδji=pi=(pjg j,g i)=pj(g j,g i)=pjβjipi=βjipj(i=1,2,3;j=1,2,3) (pjg j,g i)=pj(g j,g i)=pjδij=pi=(pjg j,g i)=pj(g j,g i)=pjβijpi=βijpj(i=1,2,3;j=1,2,3)上述式子给出了新旧坐标系中矢量的协(逆)变分量的坐标转换关系,显然其形式上与基矢量的坐标转换关系完全相同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值