数学物理方程学习笔记4

数学物理方程学习笔记4

2.热传导方程

2.1方程的导出与定解条件

物理模型: 在三维空间中,考虑一均匀、各向同性的物体,假定其内部有热源,并且与周围介质有热交换,来研究物体内部温度的分布和变化。

该方程还可以描述物质的扩散。

遵循规律: 能量守恒律

方程: u t − a 2 Δ u = f u_t-a^2\Delta u=f uta2Δu=f,其中 f = 0 f=0 f=0表示无热源, f > 0 f>0 f>0表示有热源(放热), f < 0 f<0 f<0表示有热汇(吸热)

u 与 t u与t ut无关时, − a 2 Δ u = f -a^2\Delta u=f a2Δu=f,称为Possion方程。

定解条件:
(1)初始条件

u ∣ t = 0 = φ ( x , y , z ) , ( x , y , z ) ∈ Ω u|_{t=0}=\varphi(x,y,z),(x,y,z)\in \Omega ut=0=φ(x,y,z),(x,y,z)Ω

(2)边界条件

1‘第一边界条件(已知边界上的温度分布)

u ∣ ∑ = g ( x , y , z , t ) , ∑ = ∂ Ω × ( 0 , + ∞ ) u|_{\sum{}}=g(x,y,z,t),\sum{}=\partial\Omega\times(0,+\infty) u=g(x,y,z,t),=Ω×(0,+)

2’第二边界条件(已知热量)

q ⃗ ⋅ η ⃗ = − k ∂ u ∂ η ∣ ∑ = g ( x , y , z , t ) \vec{q}\cdot\vec{\eta}=-k\frac{\partial u}{\partial \eta}|_{\sum{}}=g(x,y,z,t) q η =kηu=g(x,y,z,t)

其中 q ⃗ ⋅ η ⃗ > 0 \vec{q}\cdot\vec{\eta}>0 q η >0表示热量流出, q ⃗ ⋅ η ⃗ = 0 \vec{q}\cdot\vec{\eta}=0 q η =0表示绝热, q ⃗ ⋅ η ⃗ < 0 \vec{q}\cdot\vec{\eta}<0 q η <0表示热量流入, η ⃗ \vec{\eta} η 是边界 ∑ \sum 的外法向量, q ⃗ \vec{q} q 是热流密度

3‘第三边界条件

k ∂ u ∂ η + a 0 u = a 0 g 0 k\frac{\partial u}{\partial \eta}+a_0u=a_0g_0 kηu+a0u=a0g0

其中 a 0 a_0 a0表示热交换系数, g 0 g_0 g0表示周围介质的温度。

2.2基本知识

Flourier变换

(1)定义( x → λ x\rightarrow \lambda xλ

f ^ ( λ ) = 1 2 π ∫ − ∞ + ∞ f ( x ) e − i λ x d x \hat f(\lambda)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-i\lambda x}dx f^(λ)=2π 1+f(x)eiλxdx称为 f ( x ) f(x) f(x)的Flourier变换。

(2)性质

1‘线性性: ( a 1 f 1 + a 2 f 2 ) ∧ = a 1 f 1 ∧ + a 2 f 2 ∧ (a_1f_1+a_2f_2)^{\wedge}=a_1f_1^{\wedge}+a_2f_2^{\wedge} (a1f1+a2f2)=a1f1+a2f2

2’导数的Flourier变换: ( d f d x ) ∧ = i λ f ^ ( λ ) , ( d m f d x m ) ∧ = ( i λ ) m f ^ ( λ ) (\frac{df}{dx})^{\wedge}=i\lambda \hat{f}(\lambda),(\frac{d^mf}{dx^m})^{\wedge}=(i\lambda)^m \hat{f}(\lambda) (dxdf)=iλf^(λ),(dxmdmf)=(iλ)mf^(λ)

3’多项式的Flourier变换:( ( x f ( x ) ) ∧ = i d d λ f ∧ ( λ ) , ( x m f ( x ) ) ∧ = i m d m d λ m f ∧ ( λ ) (x f(x))^\wedge=i\frac{d}{d\lambda}f^\wedge(\lambda),(x^m f(x))^\wedge=i^m\frac{d^m}{d\lambda^m}f^\wedge(\lambda) (xf(x))=idλdf(λ),(xmf(x))=imdλmdmf(λ)

4’伸缩性质:( f ( k x ) ∧ = 1 ∣ k ∣ f ^ ( λ k ) f(kx)^\wedge =\frac{1}{|k|}\hat f(\frac{\lambda}{k}) f(kx)=k1f^(kλ)

5’卷积性质:

卷积定义: f ∗ g = ∫ − ∞ + ∞ f ( x − t ) g ( t ) d t = u = x − t ∫ − ∞ + ∞ f ( u ) g ( x − u ) d u = g ∗ f f*g=\int_{-\infty}^{+\infty}f(x-t)g(t)dt\stackrel{u=x-t}=\int_{-\infty}^{+\infty}f(u)g(x-u)du=g*f fg=+f(xt)g(t)dt=u=xt+f(u)g(xu)du=gf

( f ∗ g ) ∧ = 2 π f ∧ g ∧ (f*g)^\wedge=\sqrt{2\pi}f^\wedge g^\wedge (fg)=2π fg

(3)反演公式( λ → x \lambda\rightarrow x λx

定义: f ( x ) = lim ⁡ N → + ∞ 1 2 π ∫ − N + N f ^ ( λ ) e i λ x d λ , 记 f ( x ) = ( f ^ ( λ ) ) ∨ f(x)=\lim\limits_{N\rightarrow+\infty}\frac{1}{\sqrt{2\pi}}\int_{-N}^{+N}\hat f(\lambda)e^{i\lambda x}d\lambda,记f(x)=(\hat f(\lambda))^\vee f(x)=N+lim2π 1N+Nf^(λ)eiλxdλf(x)=(f^(λ))

性质: f ( x ) ∨ = f ^ ( − λ ) f(x)^\lor=\hat f(-\lambda) f(x)=f^(λ)

(4)重要结论

f ( x ) = e − x 2 , f ^ ( λ ) = 1 2 e − λ 2 4 f(x)=e^{-x^2},\hat f(\lambda)=\frac{1}{\sqrt{2}}e^-\frac{\lambda^2}{4} f(x)=ex2,f^(λ)=2 1e4λ2

证明:
f ^ ( λ ) = 1 2 π ∫ − ∞ + ∞ e − x 2 e − i λ x d x = 1 2 π 1 − i λ ∫ − ∞ + ∞ e − x 2 d e − i λ x = 1 2 π i λ [ e − x 2 e − i λ x ∣ − ∞ + ∞ − ∫ − ∞ + ∞ e − i λ x e − x 2 ( − 2 x ) d x ] = 1 2 π i λ 2 ∫ − ∞ + ∞ e − i λ x ( e − x 2 x ) d x = 2 i λ ( x f ( x ) ) ∧ = 2 i λ i d f ^ ( λ ) d λ 得 到 一 个 常 微 分 方 程 ⟹ f ^ ( λ ) = c e − λ 2 4 ∫ − ∞ + ∞ e − x 2 d x = π f ^ ( 0 ) = 1 2 π ∫ − ∞ + ∞ e − x 2 d x = 1 2 = c f ^ ( λ ) = 1 2 e − λ 2 4 \hat f(\lambda)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-x^2}e^{-i\lambda x}dx\\ =\frac{1}{\sqrt{2\pi}}\frac{1}{-i\lambda}\int_{-\infty}^{+\infty}e^{-x^2}de^{-i\lambda x}\\ =\frac{1}{\sqrt{2\pi}}\frac{i}{\lambda}[e^{-x^2}e^{-i\lambda x}|_{-\infty}^{+\infty}-\int_{-\infty}^{+\infty}e^{-i\lambda x}e^{-x^2}(-2x)dx]\\ =\frac{1}{\sqrt{2\pi}}\frac{i}{\lambda}2\int_{-\infty}^{+\infty}e^{-i\lambda x}(e^{-x^2}x)dx\\ =\frac{2i}{\lambda}(xf(x))^\wedge\\ =\frac{2i}{\lambda}i\frac{d\hat f(\lambda)}{d\lambda}\\ 得到一个常微分方程\\ \Longrightarrow \hat f(\lambda)=ce^{-\frac{\lambda^2}{4}}\\ \int_{-\infty}^{+\infty}e^{-x^2}dx=\sqrt{\pi}\\ \hat f(0)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}e^{-x^2}dx=\frac{1}{\sqrt{2}}=c\\ \hat f(\lambda)=\frac{1}{\sqrt{2}}e^{-\frac{\lambda^2}{4}} f^(λ)=2π 1+ex2eiλxdx=2π 1iλ1+ex2deiλx=2π 1λi[ex2eiλx++eiλxex2(2x)dx]=2π 1λi2+eiλx(ex2x)dx=λ2i(xf(x))=λ2iidλdf^(λ)f^(λ)=ce4λ2+ex2dx=π f^(0)=2π 1+ex2dx=2 1=cf^(λ)=2 1e4λ2
推论: f ′ ( x ) = e − A x 2 , f ^ ′ ( λ ) = 1 2 A e − λ 2 4 A f'(x)=e^{-Ax^2},\hat f'(\lambda)=\frac{1}{\sqrt{2A}}e^-\frac{\lambda^2}{4A} f(x)=eAx2,f^(λ)=2A 1e4Aλ2

证明:
f ^ ′ ( λ ) = f ^ ( A λ ) = 1 A f ^ ( λ A ) = 1 2 A e − λ 2 4 A \hat f'(\lambda)=\hat f(\sqrt{A}\lambda)=\frac{1}{\sqrt{A}}\hat f(\frac{\lambda}{\sqrt{A}})=\frac{1}{\sqrt{2A}}e^-\frac{\lambda^2}{4A} f^(λ)=f^(A λ)=A 1f^(A λ)=2A 1e4Aλ2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值