数学基础task04 一元函数微分学的几何应用

本文深入探讨了一元函数微分学在几何上的应用,包括极值和最值的概念及其关系,单调性与极值的判别方法,凹凸性与拐点的特征,以及渐近线的类型。通过对这些概念的详细解析,揭示了函数图形的局部和全局性质,有助于理解和应用微分学解决实际问题。
摘要由CSDN通过智能技术生成

极值和最值

极值:对于函数来讲是局部概念,研究的是函数的局部性质,比较的函数大小也是局部大小

  • 广义极大值点(极小值点): x 0 x_0 x0某个邻域内任意一点 x x x都存在: f ( x ) ≤ f ( x 0 ) f(x) \le f(x_0) f(x)f(x0) (或 f ( x ) ≥ f ( x 0 ) f(x) \ge f(x_0) f(x)f(x0))

  • 真正极大值点(极小值点): x 0 x_0 x0某个去心邻域任意一点 x x x都存在: f ( x ) < f ( x 0 ) f(x) < f(x_0) f(x)<f(x0) (或 f ( x ) > f ( x 0 ) f(x) > f(x_0) f(x)>f(x0))

最值:对于函数来讲的函数全局概念,针对的是函数定义域。

  • 广义最大值点(最小值点): f ( x ) f(x) f(x)定义域一点 x 0 x_0 x0,对定义域内任意一点 x x x均有: f ( x ) ≤ f ( x 0 ) f(x) \le f(x_0) f(x)f(x0) (或 f ( x ) ≥ f ( x 0 ) f(x) \ge f(x_0) f(x)f(x0))

  • 真正最大值点(最小值点): f ( x ) f(x) f(x)定义域一点 x 0 x_0 x0,对定义域内任意一点(异于 x 0 x_0 x0) x x x均有: f ( x ) < f ( x 0 ) f(x) < f(x_0) f(x)<f(x0) (或 f ( x ) > f ( x 0 ) f(x) > f(x_0) f(x)>f(x0))

极值与最值的关系:如果 f ( x ) f(x) f(x)在区间 I I I上有最值点 x 0 x_0 x0不是区间端点,那么 x 0 x_0 x0必是 f ( x ) f(x) f(x)的一个极值点。

极值点不依赖于函数的连续性,它只是一个局部性质。

单调性与极值判别

单调性: y = f ( x ) y=f(x) y=f(x)在区间 I I I上有 f ′ ( x ) > 0 f'(x)>0 f(x)>0(或 f ′ ( x ) < 0 f'(x)<0 f(x)<0),则 y = f ( x ) y=f(x) y=f(x) I I I上严格单调增加(严格单调减少).

极值点的必要条件(一阶可导点):设 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处可导,且在该点取极值,则必有 f ′ ( x ) = 0 f'(x)=0 f(x)=0.

极值点的第一充分条件:

f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处连续,且在 x 0 x_0 x0的某个去心邻域 U ( x 0 , δ ) U(x_0,\delta) U(x0,δ)内可导。

  1. x ∈ ( x 0 − δ , x 0 ) x\in (x_0-\delta,x_0) x(x0δ,x0)时, f ′ ( x ) < 0 f'(x)<0 f(x)<0 f ′ ( x ) > 0 f'(x)>0 f(x)>0),而 x ∈ ( x 0 , x 0 + δ ) x\in(x_0,x_0+\delta) x(x0,x0+δ)时, f ′ ( x ) > 0 f'(x)>0 f(x)>0 f ′ ( x ) < 0 f'(x)<0 f(x)<0),则 f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处取得极小值(极大值)。
  2. f ′ ( x ) f'(x) f(x) ( x 0 − δ , x 0 ) (x_0-\delta,x_0) (x0δ,x0) ( x 0 , x 0 + δ ) (x_0,x_0+\delta) (x0,x0+δ)内不变号,则点 x 0 x_0 x0不是极值点。

先找出 f ’ ( x ) = 0 f’(x)=0 f(x)=0的点,再判断该点左右两边 f ′ ( x ) f'(x) f(x)是否异号。

极值点的第二充分条件:(二阶导小于零极大,二阶导大于零极小)

f ( x ) f(x) f(x) x = x 0 x=x_0 x=x0处二阶可导,且 f ′ ( x ) = 0 f'(x)=0 f(x)=0,$f’’(x)\ne 0 , 若 ,若 f’’(x)<0 ( ( f’’(x)>0 ) , 则 ),则 f(x) 在 在 x_0$处取得极大值(极小值)。

极值点的第三充分条件:

f ( x ) f(x) f(x) x 0 x_0 x0 n n n阶可导,且 f ( m ) ( x 0 ) = 0 ( m = 1 , 2 , . . . , n − 1 ) , f ( n ) ≠ 0 ( n ≥ 2 ) f^{(m)}(x_0)=0(m=1,2,...,n-1),f^{(n)}\ne 0(n \ge 2) f(m)(x0)=0m=1,2,...,n1,f(n)=0(n2),则当 n n n取偶数且 f ( n ) < 0 ( f ( n ) > 0 ) f^{(n)}<0(f^{(n)}>0) f(n)<0(f(n)>0)时, f ( x ) f(x) f(x) x 0 x_0 x0处取极大值(极小值)。

n取奇数时,该点不为极值,是一个拐点。

凹凸性与拐点

凹凸性

更合适的解释:设函数 f ( x ) f(x) f(x)在区间 I I I上连续, x 1 , x 2 ∈ I , λ ∈ ( 0 , 1 ) x_1,x_2\in I,\lambda \in(0,1) x1,x2I,λ(0,1) f ( λ x 1 + ( 1 − λ ) x 2 ) < λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f(\lambda x_1+(1-\lambda)x_2)<\lambda f(x_1)+(1-\lambda)f(x_2) f(λx1+(1λ)x2)<λf(x1)+(1λ)f(x2),则称 y = f ( x ) y=f(x) y=f(x) I I I上为凹函数。

同济版解释:

image-20210828121618338

数学分析上关于凹凸性的概念与上述完全相反,(a)_为凸函数,(b)为凹函数,算法类(数学类)书籍也是这样定义,但考研的规范概念是同济版解释。

补充知识:(注意此时的凹凸函数概念不是同济版解释,而是数学分析的定义版本)

Jensen不等式:

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上的凸函数,则对 ∀ x i ∈ [ a , b ] , λ i > 0 , ∑ i = 1 n λ i = 1 , f ( ∑ i = 1 n λ i x i ) ≤ ∑ i = 1 n λ i f ( x i ) \forall x_i \in[a,b],\lambda_i>0,\sum\limits_{i=1}^{n}\lambda_i=1,f(\sum\limits_{i=1}^{n}\lambda_ix_i)\le\sum\limits_{i=1}^{n}\lambda_if(x_i) xi[a,b],λi>0,i=1nλi=1,f(i=1nλixi)i=1nλif(xi)

拐点:连续曲线的凹弧与凸弧的分界点。

凹凸性与拐点的判别

凹凸性:

设函数 f ( x ) f(x) f(x) I I I上二阶可导,若在 I I I f ′ ′ ( x ) > 0 ( f ′ ′ ( x ) < 0 ) f''(x)>0 (f''(x)<0) f(x)>0(f(x)<0),则 f ( x ) f(x) f(x) I I I上是凹的(凸的)。

拐点的必要条件(二阶可导点):设 f ′ ′ ( x ) f''(x) f(x)存在,且点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为曲线拐点,则 f ′ ′ ( x ) = 0 f''(x)=0 f(x)=0

拐点的第一充分条件:

f ( x ) f(x) f(x)在点 x = x 0 x=x_0 x=x0处连续,在 x 0 x_0 x0的去心邻域 U ( x 0 , δ ) U(x_0,\delta) U(x0,δ)内二阶导存在,且该点的左右邻域内 f ′ ′ ( x ) f''(x) f(x)变号,则点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为曲线拐点。

拐点的第二充分条件:

f ( x ) f(x) f(x) x 0 x_0 x0的某个邻域内三阶可导,且 f ′ ′ ( x ) = 0 , f ′ ′ ′ ( x ) ≠ 0 f''(x)=0,f'''(x)\ne0 f(x)=0,f(x)=0,则 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为拐点。

拐点的第三充分条件:

f ( x ) f(x) f(x) x 0 x_0 x0 n n n阶可导,且 f ( m ) ( x 0 ) = 0 ( m = 1 , 2 , . . . , n − 1 ) , f ( n ) ≠ 0 ( n ≥ 3 ) f^{(m)}(x_0)=0(m=1,2,...,n-1),f^{(n)}\ne 0(n \ge 3) f(m)(x0)=0m=1,2,...,n1,f(n)=0(n3),则当 n n n取奇数时, ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为拐点。

渐近线

斜渐近线:

lim ⁡ x → + ∞ f ( x ) x = k 1 , lim ⁡ x → + ∞ [ f ( x ) − k 1 x ] = b 1 \lim\limits_{x\to +\infty}\frac {f(x)}x =k_1,\lim\limits_{x\to +\infty}[f(x)-k_1x]=b_1 x+limxf(x)=k1,x+lim[f(x)k1x]=b1,则 y = k 1 x + b 1 y=k_1x+b_1 y=k1x+b1是曲线 y = f ( x ) y=f(x) y=f(x)的一条斜渐近线;

lim ⁡ x → − ∞ f ( x ) x = k 2 , lim ⁡ x → − ∞ [ f ( x ) − k 1 x ] = b 2 \lim\limits_{x\to -\infty}\frac {f(x)}x =k_2,\lim\limits_{x\to -\infty}[f(x)-k_1x]=b_2 xlimxf(x)=k2,xlim[f(x)k1x]=b2,则 y = k 2 x + b 2 y=k_2x+b_2 y=k2x+b2</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值