目录
一、项目需求:
1、用户上传图片信息,检测出物体种类。
二、编译环境:
编译器:Pycharm2022.2.1
全栈框架:Flask2.2.5
编程语言:Python3.7
深度学习框架:TensorFlow2.3
三、项目结构:

四、功能演示:
1、程序首页面
2、上传图片
3、图像预测
预测结果:罗得西亚脊背犬
五、部分代码展示
1、模型加载
应用keras框架的现有模型Vgg19
from tensorflow.keras.applications.vgg19 import VGG19 # 随机初始化 model = VGG19(weights=None) # 使用在ImageNet上预训练的权重 model = VGG19(weights='imagenet') #vgg19模型下载地址:https://blog.csdn.net/dcrmg/article/details/81178424 #model = VGG19(weights='./model/vgg/weights_19_layers/vgg19_weights_tf_dim_ordering_tf_kernels.h5') #关于加载模型的一些保存解决:https://blog.csdn.net/qq_41776781/article/details/94550179 model.make_predict_function() # Necessary if Tesorflow above 2.0 #model._make_predict_function() # Necessary if Tesorflow below 2.02、模型预测
def model_predict(img_path, model): img = image.load_img(img_path, target_size=(224, 224)) # Preprocessing the image x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) preds = model.predict(x) return preds3、前端页面
六、程序源码
本专栏订阅用户私聊发程序源码
非本专栏订阅用户下载链接:https://download.csdn.net/download/qq_51701007/88859503





926

被折叠的 条评论
为什么被折叠?



