Python应用案例——基于Flask框架的图像识别小程序

目录

一、项目需求:

二、编译环境:

三、项目结构:

四、功能演示: 

1、程序首页面

2、上传图片

3、图像预测

 五、部分代码展示

1、模型加载

2、模型预测

3、前端页面

六、程序源码


一、项目需求:

1、用户上传图片信息,检测出物体种类。

二、编译环境:

编译器:Pycharm2022.2.1

全栈框架:Flask2.2.5

编程语言:Python3.7

深度学习框架:TensorFlow2.3

三、项目结构:

四、功能演示: 

1、程序首页面

2、上传图片

3、图像预测

 

预测结果:罗得西亚脊背犬

 五、部分代码展示

1、模型加载

应用keras框架的现有模型Vgg19

from tensorflow.keras.applications.vgg19 import VGG19

# 随机初始化
model = VGG19(weights=None)
# 使用在ImageNet上预训练的权重
model = VGG19(weights='imagenet')

#vgg19模型下载地址:https://blog.csdn.net/dcrmg/article/details/81178424
#model = VGG19(weights='./model/vgg/weights_19_layers/vgg19_weights_tf_dim_ordering_tf_kernels.h5')
#关于加载模型的一些保存解决:https://blog.csdn.net/qq_41776781/article/details/94550179

model.make_predict_function()          # Necessary if Tesorflow above 2.0
#model._make_predict_function()          # Necessary if Tesorflow below 2.0

2、模型预测

def model_predict(img_path, model):
    img = image.load_img(img_path, target_size=(224, 224))

    # Preprocessing the image
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    preds = model.predict(x)
    return preds

3、前端页面

六、程序源码

本专栏订阅用户私聊发程序源码

非本专栏订阅用户下载链接:https://download.csdn.net/download/qq_51701007/88859503

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

代码骑士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值