Python应用项目案例算法及源码1
文章平均质量分 84
内含NLP文本匹配、文本分类、图像识别、图像处理算法与完整的项目应用案例源码。
编译环境:
Window10
+Anaconda3
+Pyhton3.7
+TensorFlow2.3
代码骑士
中国科学院大学计算机专业硕士。熟悉Python语言、机器学习、深度学习、NLP、CV、LLM等人工智能领域技术。喜欢交流学习和知识分享,平时会在CSDN分享一些学习笔记和技术Blog。
展开
-
Python应用案例——基于Flask框架的图像识别小程序
链接:https://pan.baidu.com/s/1FkdQXv13OefohvbgXzMvLA。应用keras框架的现有模型Vgg19。预测结果:罗得西亚脊背犬。原创 2024-02-21 08:56:38 · 398 阅读 · 0 评论 -
Python应用案例——基于Flask框架的医疗专家系统小程序
1、用户通过输入病症描述,系统自动返回给用户最相似的病例信息和治疗方案。2、能搜索、展示一个或全部病例信息。原创 2024-02-21 08:43:48 · 612 阅读 · 0 评论 -
Python应用案例——基于Word2Vec文本匹配的医疗方案推荐算法
较大的学习率可能会导致模型快速收敛但可能无法找到全局最优解,而较小的学习率则会导致模型收敛缓慢。在这个例子中,alpha被设置为0.025,表示每次更新词向量时,将根据当前的梯度方向沿着负梯度方向移动800维空间中的2.5个单位长度。其中,vocab表示词汇表的大小为2332,vector_size表示词向量的维度为800,alpha表示学习率(步长)为0.025。链接:https://pan.baidu.com/s/15MymdTE0GrV3gsF6bA6_wA。'头疼 胸闷 气短 心如刀绞 ',原创 2024-02-05 11:38:46 · 188 阅读 · 0 评论 -
Python应用案例——基于Keras, OpenCV和MobileNet口罩佩戴识别
训练过程中,每个批次的大小为BS,每个周期(epoch)的训练步数为训练数据长度除以批次大小,验证数据为测试数据(testX和testY),验证步数为测试数据长度除以批次大小。然后,在基础模型的基础上构建了一个新的模型,该模型的输入与基础模型相同,输出为经过一系列操作后的全连接层。接下来,遍历每个类别,读取该类别下的所有图像,并将它们添加到数据列表中。对图像进行人脸检测。接下来,遍历检测到的人脸,计算每个检测框的坐标,并将人脸ROI从BGR格式转换为RGB格式,调整大小为224x224,并进行预处理。原创 2024-02-21 09:39:55 · 1256 阅读 · 0 评论 -
Python应用案例——基于OpenCV图像卡通化处理&图像识别算法实验
首先导入所需的库,然后定义一个名为find_face_MTCNN的函数,该函数接收彩色图像和检测结果列表作为输入,对检测到的人脸进行矩形框标记并应用高斯模糊进行卡通化处理。在无限循环中,读取视频帧并使用MTCNN检测器检测人脸,然后将检测到的人脸传递给find_face_MTCNN函数进行卡通化处理。最后,将处理后的图像显示在窗口中,按下'q'键退出循环。sigma_s 控制邻域的大小,而 sigma_r(对于 sigma_range)控制邻域内相似颜色的平均值。原创 2024-02-21 09:59:37 · 613 阅读 · 0 评论 -
Python应用案例——基于TensorFlow 2.3建立RNN搭配Word2Vec Embedding进行文本分类
中文停用词列表:提取码:xbf1测试用例:某外卖平台收集的用户评价,正向 4000 条,负向 约 8000 条—原创 2024-02-21 10:52:09 · 898 阅读 · 0 评论
分享