一起学NLP
文章平均质量分 95
本专栏为个人的NLP学习笔记,欢迎大家共同讨论交流学习。代码同步:https://github.com/codesknight/Learning-NLP-Together 参考书籍:《深度学习进阶:自然语言处理》——斋藤康毅
代码骑士
中国科学院大学计算机专业硕士。熟悉Python语言、机器学习、深度学习、NLP、CV、LLM等人工智能领域技术。喜欢交流学习和知识分享,平时会在CSDN分享一些学习笔记和技术Blog。
展开
-
【一起学NLP】Chapter3-使用神经网络解决问题
在内部实现中,首先用零向量(np.zeros())初始化偏置,再用小的随机数(0.01 *np.random.randn())初始化权重。Trainer类的内部实现和刚才的源代码几乎相同,只是添加了一些新的功能而已,我们在需要的时候再详细说明其用法。另外,t是one-hot向量,对应的正确解标签的类标记为1,其余的标记为0。另外,Trainer类有plot()方法,它将fit()方法记录的损失(准确地说,是按照eval_interval评价的平均损失)在图上画出来。Epoch表示学习的单位。原创 2024-10-06 17:07:32 · 1092 阅读 · 0 评论 -
【一起学NLP】Chapter2-学习神经网络
根据刚才复习的链式法则,反向传播中流动的导数的值是根据从上游(输出侧)传来的导数和各个运算节点的局部导数之积求得的。为什么说和W有关系呢?也就是说,只要能够计算各个函数的局部的导数,就能基于它们的积计算最终的整体的导数。所谓逆向关系,是指Sum节点的正向传播相当于Repeat节点的反向传播,Sum节点的反向传播相当于Repeat节点的正向传播。梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。原创 2024-09-23 16:07:13 · 1271 阅读 · 0 评论 -
【一起学NLP】Chapter1-基本语法与神经网络的推理
备注:本专栏为个人的NLP学习笔记,欢迎大家共同讨论交流学习。代码同步:https://github.com/codesknight/Learning-NLP-Together 参考书籍:《深度学习进阶:自然语言处理》——斋藤康毅。原创 2024-09-20 12:08:02 · 996 阅读 · 0 评论
分享