ZCMU-2103士兵排队问题(拓扑排序)

该博客介绍了一种利用拓扑排序解决部分排序问题的方法,具体应用于士兵排队场景。通过建立有向无环图(DAG)并进行拓扑排序,找到一种字典序最小的排序方案。当输入数据无解时,输出NoAnswer!。博客内容包括问题描述、解决方案、代码实现及类似题目。拓扑排序结合优先队列确保了结果的字典序最小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接https://acm.zcmu.edu.cn/JudgeOnline/problem.php?id=2103

Description
有N个士兵(1≤N≤26),编号依次为 A,B,C,…,队列训练时,指挥官要把一些士兵从高到矮一次排成一行,但现在指挥官不能直接获得每个人的身高信息,只能获得“P1比P2高”这样的比较 结果(P1、P2∈A,B,C,…,Z,记为 P1>P2),如”A>B”表示A比B高。
请编一程序,根据所得到的比较结果求出一种字典序最小的排队方案。
(注:比较结果中没有涉及的士兵不参加排队
Input
比较结果从文本文件中读入(文件由键盘输入),每个比较结果在文本文件中占一行。
Output
若输入数据无解,打印“No Answer!”信息,否则从高到矮一次输出每一个士兵的编号,中间无分割符,并把结果写入文本文件中,文件由键盘输入
Sample Input
A>B
B>D
F>D
Sample Output
ABFD


此题由部分排序求全体排序,且排序结果可能有多种。
在图论中,对于指明事件的优先次序问题都使用有向无环图,对有向无环图进行 拓扑排序,即可得到图中所有结点的一种线性次序。

由拓扑排序得到的线性次序满足如下条件:
如果图G包含边(u,v),则结点u在拓扑排序中处于结点v的前面(如果图G包含环路,则不可能排出一个线性次序)
可以将图的拓扑排序看做是将图的所有结点在一条水平线上排开,图的所有有向边都从左指向右。(详见《算法导论》拓扑排序)


此题显然便是求某图的拓扑排序次序,我们将输入的“比较结果”,如:A>B,记为图的一条边<A,B>,便得到了一张图。随后对该图进行拓扑排序,但此题并非简单的拓扑,还要求所得结果字典序最小,故还需借助优先队列,先对字典序小的结点进行操作。
关于拓扑排序的实现,可以参照相关博客。

【代码如下】

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e3+10;
vector<int>p[maxn];
priority_queue<int,vector<int>,greater<int> >q;//优先序列(小顶堆)
int vis[maxn],ans[maxn],in[maxn]={0};
int main()
{
    char a,c,b;
    while(cin>>a>>c>>b){
        vis[a-'A']=1;//标记出现过的“士兵”
        vis[b-'A']=1;
        p[a-'A'].push_back(b-'A');//存边
        in[b-'A']++;//计算顶点的入度
    }
    for(int i=0;i<26;i++){
        if(in[i]==0&&vis[i])
        q.push(i);//将入度为0的顶点存入优先队列中
    }
    int cnt=0;
    while(!q.empty()){
        int t=q.top();
        q.pop();
        ans[cnt++]=t;
        for(int i=0;i<p[t].size();i++){
            in[p[t][i]]--;//更新顶点的入度
            if(!in[p[t][i]]) q.push(p[t][i]);
        }
    }
    for(int i=0;i<26;i++){
        if(in[i]>0){//若最终还存在入度大于0 的顶点,则无解
            cout<<"No Answer!\n";
            return 0;
        }
    }
    for(int i=0;i<cnt;i++){
        cout<<(char)(ans[i]+'A');
    }
    return 0;
}

相似题目:解法一致,均为拓扑排序
https://acm.zcmu.edu.cn/JudgeOnline/problem.php?id=2153
http://acm.hdu.edu.cn/showproblem.php?pid=1285

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值