考研高数复习

 一 函数

(一)函数的概念常见函数

        定义:对于每个数 x∈D,变量y按照一定法则总有一个确定的y于它对应,则称x是y的函数,记y=f(x)

        定义域:D为定义域

        值域:{y|y=f(x),x∈D}

        函数有连个基本要素:定义域,对应法则

        

        2.复合函数     

       设y=f(u),定义域Df,u=g(x),定义域Dg,值域Rg

                    Df ∩ Rg ≠  ф

        称y=f[g(x)]为函数f(u)与u=g(x)的复合函数

        3.反函数

         设函数y=f(x)的定义域为D,值域Rg,对任意y∈Ry,有唯一确定的x∈D,使得y=f(x),计x=eq?f%5E%7B-1%7D%28y%29

        4.初等函数

        幂,指数,对数,三角,反三角函数统称基本初等函数

        由常数和基本初等经过有限次的加,减,乘,除和复合得到的函数

(二)函数的性态

    1.单调性

        定义

            单调增:x1<x2  => f(x1)<f(x2)

            单调不减:x1<x2  => f(x1)≤f(x2)

             设f(x),x∈[a,b],f(a)=0

             单增 => f(x)>0 ,x∈(a,b]

                不减 => f(x)≥0, x∈(a,b]               

       判定   

            (1)根据定义

            (2)导数

                      1. f'(x)>0,单增

                      2. f'(x)≥0,单调不减

 2.奇偶性

      定义 

      (1)奇函数关于原点对称,且在x=0处,f(x)=0

      (2)偶函数关于轴对称

     判定

    (1)通过定义

    (2)设f(x)可导

          1. f(x)奇函数 => f’(x) 偶函数

              f’(x) 偶函数 推不出 f(x) 为奇函数

      例如 :eq?f%27%28x%29%3Dx%5E2%2Cf%28x%29%3D%5Cfrac%7B1%7D%7B3%7D*x%5E3&plus;C  当C=0时,f(x)才为奇函数 

        2. f(x)偶函数 => f’(x) 奇函数

  (3)连续的奇函数的原函数都是偶函数

            连续的偶函数的原函数之一是奇函数

 设f(x)连续

  (1)若f(x)是奇函数,则eq?%5Cint_%7B0%7D%5E%7Bx%7Df%28t%29dt是偶函数(2)若f(x)是偶函数,则eq?%5Cint_%7B0%7D%5E%7Bx%7Df%28t%29dt是奇函数                   对于eq?%5Cint_%7Ba%7D%5E%7Bx%7Df%28t%29dt,则只有(1)成立,(2)不成立

               eq?%5Cint_%7Ba%7D%5E%7Bx%7Df%28t%29dt=eq?%5Cint_%7Ba%7D%5E%7B0%7Df%28t%29dt+eq?%5Cint_%7B0%7D%5E%7Bx%7Df%28t%29dt

                                   常数C      +    积分·    

3.周期性        

   定义:f(x+T)=f(x)

  (1)若f(x)以T为周期,则f(ax+b)以eq?%5Cfrac%7BT%7D%7B%7Ca%7C%7D为周期

   判定:

 (1)定义

(2)周期函数的导函数为周期函数

      周期函数的原函数不一定是周期函数

     设 f(x) 连续函数以T为周期

      eq?F%28x%29%3D%5Cint_%7B0%7D%5E%7Bx%7Df%28t%29dt是以T为周期的周期函数<=>eq?%5Cint_%7B0%7D%5E%7BT%7Df%28x%29dx%3D0

                                                                                                                                                

                        eq?F%28x&plus;T%29%3D%5Cint_%7B0%7D%5E%7Bx&plus;T%7Df%28t%29dt%3D%5Cint_%7B0%7D%5E%7Bx%7Df%28t%29dt&plus;%5Cint_%7Bx%7D%5E%7Bx&plus;T%7Df%28t%29dteq?F%28x%29%3D%5Cint_%7Bx%7D%5E%7Bx&plus;T%7Df%28t%29dt%3D%5Cint_%7B0%7D%5E%7BT%7Df%28t%29dt%3D0   eq?F%28x&plus;T%29%3DF%28x%29

周期函数的原函数是周期函数的充要条件是在一个周期上的积分为0     

  例题 已知f(x)=e^sinx+e^(-sinx)f'''(2Π)= 

    f(x)为偶函数且以2Π为周期 => f'''(2Π)=f'''(0);

   将f(x)在0处泰勒展开           eq?f%28x%29%3Df%280%29&plus;f%27%280%29*x&plus;%5Cfrac%7Bf%27%27%280%29%7D%7B2%21%7D*x%5E2&plus;%5Cfrac%7Bf%27%27%27%280%29%7D%7B3%21%7D*x%5E3&plus;.....

 根据泰勒公式可知函数为:

  (1)偶函数:奇数次导数皆为0 

 (2)奇函数:偶数次导数皆为0,且f(0)=0;        

   该函数为偶函数,f'''(x)为奇数次导数,故为0

 4.有界性

   定义

 若存在:eq?%5Cexists%20M%3E0%2C%5Cforall%20x%5Cin%20I%2C%7Cf%28x%29%7C%5Cleq%20M%3B则称f(x)在I上有界

  判定

(1)定义

(2)f(x)在[a,b]上连续 => f(x)在[a,b]上有界

        若两端为开区间,则无法推断其在开区间有界  例如:1/x 在(0,1)上连续但无界

(3)f(x)在(a,b)上连续,且eq?f%28a%5E%7B&plus;%7D%29%2Cf%28b%5E-%29存在 => f(x)在(a,b)上有界

 (4)f'(x)在有限区间I上有界 => f(x)在I上有界

设区间I上最小值m,最大值M,区间长度L                                                                eq?%7Cf%28x%29%7C%3D%7Cf%28x%29-f%28x_%7B0%7D%29&plus;f%28x_%7B0%7D%29%7C%5Cleq%20%7Cf%27%28%5Cxi%20%29%7C*%7Cx-x_%7B0%7D%7C&plus;%7Cf%28x_%7B0%7D%29%7C%5Cleq%20ML&plus;%7Cf%28x_%7B0%7D%29%7C

例题1

(A)若f'(x)在(0,1)内连续,则f(x)在(0,1)内有界         f'(x)=1/x^2

(B)若f(x)在(0,1)内连续,则f(x)在(0,1)内有界          f(x)=1/x

(C)若f'(x)在(0,1)内有界,则f(x)在(0,1)内有界

(D)若f(x)在(0,1)内有界,则f'(x)在(0,1)内有界       

          f(x)=x^a  f'(x)=x^(a-1)    0<a<1

                               

例题:设f(x)连续,且f'(0)>0,则存在δ>0,使得

 (A)若f'(x)在(0,δ)内单调增加         (B)若f'(x)在(-δ,0)内单调减少   (C)对任意的x∈(0,δ)有f(x)>f(0)  (D)对任意的x∈(-δ,0)有f(x)>f(0)                      eq?0%3Cf%27%28x_%7B0%7D%29%3D%5Clim_%7Bx%5Cto%20x_%7B0%7D%7D%5Cfrac%7Bf%28x%29-f%28x_%7B0%7D%29%7D%7Bx-x_%7B0%7D%7D

   因此若eq?f%27%28x_%7B0%7D%29%3E0%2C则存在δ>0

   当eq?x%5Cin%20%28x_%7B0%7D-%5Cdelta%20%2Cx_%7B0%7D%29%2Cf%28x%29%3Cf%28x_%7B0%7D%29

   当eq?x%5Cin%20%28x_%7B0%7D%20%2Cx_%7B0%7D&plus;%5Cdelta%29%2Cf%28x%29%3Ef%28x_%7B0%7D%29

   f'(x0)>0 不能推出 f(x)在x0某邻域内单增 对于 f(x)=x+2*x^2*sin(1/x),x≠0,x=0,时f(x)=0

   x≠0时 f'(x)=1+4*xsin(1/x)-2*cos(1/x)

   只要x=1/2k*Π,f'(x)= -1<0

                       

例题:设函数f(x)在x=x0处有二阶导数,则

                      

(A)当f(x)在x0的某邻域内单调增加时,f'(x0)>0   

     可能存在等于0的点 例如:f(x)=x^3   

(B)当f'(x0)>0 ,则f(x)在x0的某邻域内单调增加

      根据题中二阶导存在知,f'(x)连续,根据函数的保号性可知存在邻域,在该邻域内f'(x)>0

(C)当f(x)在x0的某邻域内是凹函数时,f''(x0)>0   

       可能存在等于0的点 例如:f(x)=x^4  

(D)当f''(x0)>0时,f(x)在x0的某邻域内是凹函数        

    一点处的导数值不能决定函数形状

二 极限

(一)极限的概念  

  1.数列极限 

  eq?%5Clim_%7Bn%5Cto%20&plus;%5Cinfty%20%7Da_n%3DA

   eq?%5Cforall%20%5Cvarepsilon%20%3E0%2C%5Cexists%20N%3E0,当n>N, eq?%7Ca_n-A%7C%3C%5Cvarepsilon 2.函数极限

   lim f(x)= A:
     eq?%5Cforallε>0, eq?%5Cexistsδ(ε)>0,当0<|x- x0|<δ时,If(x)-A|<ε.
   1)局部有界性 
       若eq?%5Clim_%7Bx%5Cto%20x_0%7Df%28x%29存在,则f(x) 在点xo某去心邻域内有界; 若f(X)存在,则f(X)在点xo某去心邻域内有界;                   

    2)保号性,设lim f(x)=A
       (1)若A>0,则eq?%5Cexists%20%5Cdelta%20%3E0,当x∈Ueq?%28x_0%2C%5Cdelta%20%29时,f(x)> 0; 
      (2)如果当x∈Ueq?%28x_0%2C%5Cdelta%20%29时,f(x)≥0,那么A≥0.

    3)保序性:

 设 eq?%5Clim_%7Bx%5Cto%20x_0%7Df%28x%29%3DA%2C%5Clim_%7Bx%5Cto%20x_0%7Dg%28x%29%3DB 则
   (1)若A>B→eq?%5Cexists%20%5Cdelta%20%3E0,当x∈Ueq?%28x_0%2C%5Cdelta%20%29当时,f(x)> g(x).

 (2)若eq?%5Cexists%20%5Cdelta%20%3E0,当x∈Ueq?%28x_0%2C%5Cdelta%20%29时f(x)≥g(x),A≥B

(二)求极限   

   若f(x)在x=0的某邻域内连续,且 x→0时f(x)是x的‘m阶无穷小,φ(x)是x的n阶无穷小
  则当x→0时,F(x)=eq?%5Cint_%7B0%7D%5E%7B%5Cvarphi%20%28x%29%7Df%28t%29dt是 x的n(m+ 1)阶无穷小

        (一)连续的概念
        (二)间断点及其类型
        (三)连续函数的性质

                1)连续函数的和、差、积、商(分母不为零)及复合仍为连续函数;

                2)初等函数在其定义区间内处处连续

                3)推论:若f(x)在[a,b]上连续,则f(x)在[a,b]上可取到介于它在[a,b] 上最小值 与最大值之间的-一切值.
                4)零点定理若f(x)在[a,b]上连续,且f(a). f(b) <0,则必eq?%5Cexistsξ∈(a,b), 使f(ξ)=0.
        定理

 [例]设f(x) 在[0,1] 连续,f(0)= f(1),)求证: eq?%5Cexistsξ∈[0,1], 使f(ξ+1/4)=f(ξ)

   证明:令F(x)=f(x+1/4)-f(x),x∈[0,3/4]

            F(0)=f(1/4)-f(0)

            F(1/4)=f(1/2)-f(1/4)

            F(1/2)=f(3/4)-f(1/2)

            F(3/4)=f(1)-f(3/4)

                        F(0)+F(1/4)+F(1/2)+F(3/4)=f(1)-f(0)=0

若F(x)在[0,3/4],上无零点,则根据F(x)在定义域上连续F(x)恒大于0或恒小于0,则不符合等式  故,存在      

 1.记eq?f%28x%29%3D27x%5E3&plus;5x%5E2-2的反函数为eq?f%5E%7B-1%7D,求极限eq?%5Clim_%7Bx%5Cto%20%5Cinfty%20%7D%5Cfrac%7Bf%5E%7B-1%7D%2827x%29-f%5E%7B-1%7D%28x%29%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D

        x趋于无穷,那么eq?f%5E%7B-1%7D可近似看作eq?f%5E%7B-1%7D%28x%29%3D%5Cfrac%7B1%7D%7B3%7D%5Csqrt%5B3%5Dx

        

 2.eq?%5Clim_%7Bx%5Cto%20%5Cinfty%20%7D%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cint_%7B0%7D%5E%7Bx%7Dt%7Csint%7Cdt

 令eq?an%3D%5Cint_%7B0%7D%5E%7Bn%5Cpi%20%7Dt%7Csint%7Cdt

            eq?an%3D%5Cint_%7B0%7D%5E%7Bn%5Cpi%20%7Dt%7Csint%7Cdt%3D%5Cint_%7B0%7D%5E%7Bn%5Cpi%20%7D%28n%5Cpi-u%29%7Csin%28n%5Cpi-u%29%7Cdu​​​​​​                                                          eq?%3Dn%5Cpi%5Cint_%7B0%7D%5E%7Bn%5Cpi%7D%7Csinu%7Cdu-%5Cint_%7B0%7D%5E%7Bn%5Cpi%7Du%7Csinu%7Cdu%3Dn%5Cpi%5Cint_%7B0%7D%5E%7Bn%5Cpi%7D%7Csinu%7Cdu-an

 所以eq?an%3Dn%5E2%5Cpi

因为:eq?n%5Cpi%20%5Cleq%20x%5Cleq%20%28n&plus;1%5Cpi%20%29

 所以:eq?%5Cfrac%7Bn%5E2%5Cpi%20%7D%7Bn%5E2%5Cpi%20%5E2%7D%5Cleq%20%5Clim_%7Bx%5Cto%20%5Cinfty%20%7D%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cint_%7B0%7D%5E%7Bx%7Dt%7Csint%7Cdt%5Cleq%20%5Cfrac%7Bn%5E2%5Cpi%20%7D%7B%28n&plus;1%29%5E2%5Cpi%20%5E2%7D

  原极限eq?%3D%5Cfrac%7B1%7D%7B%5Cpi%7D

3.eq?%5Cint_%7B0%7D%5E%7B&plus;%5Cinfty%7De%5E%7B-2x%7D%7Csinx%7Cdx

  原式eq?%3D%5Cint_%7B0%7D%5E%7B%5Cpi%7De%5E%7B-2x%7D%7Csinx%7Cdx&plus;%5Cint_%7B%5Cpi%7D%5E%7B&plus;%5Cinfty%7De%5E%7B-2x%7D%7Csinx%7Cdx

  令 eq?%5Cint_%7B%5Cpi%7D%5E%7B&plus;%5Cinfty%7De%5E%7B-2x%7D%7Csinx%7Cdx%3D%5Clim_%7Ba%5Cto%20&plus;%5Cinfty%7D%5Cint_%7B%5Cpi%7D%5E%7Ba%7De%5E%7B-2x%7D%7Csinx%7Cdx

eq?t%3Dx-%5Cpi%2Cdt%3Ddx%2Cx%3D%5Cpi&plus;t                       eq?%3D%5Cfrac%7B%5Cbegin%7Bvmatrix%7D%20%28e%5E%7B-2x%7D%29%27%20%26sin%27x%20%5C%5C%20e%5E%7B-2x%7D%26sinx%20%5Cend%7Bvmatrix%7D%5E%5Cpi_0%7D%7B%28-2%29%5E2&plus;1%5E2%7D%20&plus;%5Clim_%7Ba%5Cto%20&plus;%5Cinfty%7D%5Cint_%7B0%7D%5E%7Ba-%5Cpi%7De%5E%7B-2%28%5Cpi&plus;t%29%7D%7Csint%7Cdt    所以原极限eq?%3D%5Cfrac%7B1&plus;e%5E%7B-2%5Cpi%7D%7D%7B5%281-e%5E%7B-2%5Cpi%7D%29%7D

 拉普拉斯

   f(x)以T为周期,则eq?%5Cint_%7B0%7D%5E%7B&plus;%5Cinfty%7De%5E%7BSx%7Df%28x%29dx%3D%5Cfrac%7B1%7D%7B1-e%5E%7B-ST%7D%7D%5Cint_%7B0%7D%5E%7BT%7De%5E%7B-Sx%7Df%28x%29dx

  3.eq?%5Clim_%7Bx%5Cto%200%7D%5Cfrac%7Be%5E%7B%281&plus;x%29%5E%5Cfrac%7B1%7D%7Bx%7D%7D-%281&plus;x%29%5E%7B%5Cfrac%7Be%7D%7Bx%7D%7D%7D%7Bx%5E2%7D

                eq?%5Cfrac%7Be%5E%7Be%5E%7B%5Cfrac%7B%5Cln%20%281&plus;x%29%7D%7Bx%7D%7D%7D-e%5E%5Cfrac%7Be%5Cln%281&plus;x%29%7D%7Bx%7D%7D%7Bx%5E2%7D%3De%5E%7Be%7D%5Cfrac%7Be%5E%7Be%5E%7B%5Cfrac%7B%5Cln%20%281&plus;x%29%7D%7Bx%7D%7D-%5Cfrac%7Be%5Cln%281&plus;x%29%7D%7Bx%7D%7D-1%7D%7Bx%5E2%7D%20%3De%5Ee%5Cfrac%7Be%5E%7B%5Cfrac%7B%5Cln%20%281&plus;x%29%7D%7Bx%7D%7D-%5Cfrac%7Be%5Cln%20%281&plus;x%29%7D%7Bx%7D%7D%7Bx%5E2%7D             eq?e%5E%7B%28e&plus;1%29%7D%5Cfrac%7Be%5E%7B%5Cfrac%7B%5Cln%20%281&plus;x%29%7D%7Bx%7D-1%7D-%5Cfrac%7B%5Cln%20%281&plus;x%29%7D%7Bx%7D%7D%7Bx%5E2%7D%20%3De%5E%7B%28e&plus;1%29%7D%5Cfrac%7B%5B1&plus;%5Cfrac%7B%5Cln%20%281&plus;x%29%7D%7Bx%7D-1&plus;%5Cfrac%7B1%7D%7B2%21%7D%7B%28%5Cfrac%7B%5Cln%20%281&plus;x%29%7D%7Bx%7D-1%29%5E2%7D%5D-%5Cfrac%7B%5Cln%20%281&plus;x%29%7D%7Bx%7D%7D%7Bx%5E2%7D   eq?e%5E%7B%28e&plus;1%29%7D%5Cfrac%7B%5Cfrac%7B1%7D%7B2%21%7D%28%5Cfrac%7B1%7D%7B2%7Dx%29%5E2%7D%7Bx%5E2%7D%3D%5Cfrac%7B1%7D%7B8%7De%5E%7B%28e&plus;1%29%7D

                

        

导数

(一)导数的概念 

   例题:设eq?f%28x%29eq?%28%5Cfrac%7B-%5Cpi%20%7D%7B2a%7D%7B%7D%2C%5Cfrac%7B%5Cpi%20%7D%7B2a%7D%29%28a%3E0%29内有定义,且eq?f%27%280%29%3Da,又对任意的            eq?x%2Cy%2Cx&plus;y%5Cin%20%28%5Cfrac%7B-%5Cpi%7D%7B2a%7D%2C%5Cfrac%7B%5Cpi%7D%7B2a%7D%29eq?f%28x&plus;y%29%3D%5Cfrac%7Bf%28x%29&plus;f%28y%29%7D%7B1-f%28x%29f%28y%29%7D,求f(x)

   令x=y=0 => f(0)=0          eq?%5Clim_%7B%5CDelta%20x%5Cto%200%7Df%27%28x%29%3D%5Cfrac%7Bf%28x&plus;%5CDelta%20x%29-f%28x%29%7D%7B%5CDelta%20x%7D%3D%5Cfrac%7B%5Cfrac%7Bf%28x%29&plus;f%28%5CDelta%20x%29%7D%7B1-f%28x%29f%28%5CDelta%20x%29%7D-f%28x%29%7D%7B%5CDelta%20x%7D%3D%5Cfrac%7Bf%28%5CDelta%20x%29%7D%7B%5CDelta%20x%7D%7B%281&plus;f%5E2%28x%29%29%7D            eq?f%27%28x%29%3Da%5B1&plus;f%5E2%28x%29%5D%2C%5Cfrac%7Bf%27%28x%29%7D%7B1&plus;f%5E2%28x%29%7D%3Da%20%2Cf%280%29%3D0%3D%3Ef%28x%29%3Dtanax

(二)微分的概念

    若eq?%5CDelta%20y%3Df%28x_0&plus;%5CDelta%20x%29-f%28x_0%29%3DA%5CDelta%20x&plus;%5Ccirc%20%28%5CDelta%20x%29

                线性主部+变化量的△x的高阶无穷小

 则称f(x)在x0处可微,记A△x为微分,dy=A△x dx

  函数在某点可微的充分必要条件为f(x)在该点处可导

     驻点:

         1)一阶导函数图像

          (1)函数值为0(2)函数值正负性改变(极值点)

     拐点

         1)一阶导函数图像

          (1)曲线单调性改变(2)曲线图像极值点

 例题:函数f(x)有连续导数,且满足eq?f%28x%29&plus;3%5Cint_%7B0%7D%5E%7B3%7Df%28t%29dt%3D%5Cfrac%7B3%7D%7B2%7Dx%5E2&plus;%5Cfrac%7B2%7D%7B3%7D,f(x)必存在

          eq?f%27%28x%29&plus;3f%28x%29%3D3x%2Cf%27%27%28x%29&plus;3f%27%28x%29%3D3 令eq?f%27%28x%29%3D0%2Cf%27%27%28x%29%3D3%3E0             eq?f%28x%29%3De%5E%7B-%5Cint%203dx%7D%5B3xe%5E%7B%5Cint%203dx%7D&plus;C%5D%2Cf%280%29%3D%5Cfrac%7B2%7D%7B3%7D%20%3D%3Ef%28x%29%3Dx-%5Cfrac%7B1%7D%7B3%7D&plus;e%5E%7B-3x%7D

 eq?f%27%28x%29%3D1-3e%5E%7B-3x%7Deq?x%3D%5Cfrac%7B1%7D%7B3%7D%5Cln%203,极大值点

        

设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=a,f(b)=b

 (1)至少存在一点eq?%5Cxi%20%5Cin%28a%2Cb%29,使得eq?f%28%5Cxi%29%3Da&plus;b-%5Cxi

        设F(x)=f(x)+x,eq?F%28a%29%3D2a%5Cleq%20a&plus;b%5Cleq%202b%3DF%28b%29

   根据连续函数的介值定理知道,必存在一点eq?%5Cxi使得                                                                        eq?F%28a%29%5Cleq%20F%28%5Cxi%29%3Da&plus;b%5Cleq%20F%28b%29

(2)至少存在两个不同点eq?%5Ceta_1%2C%5Ceta_2%20%5Cin%28a%2Cb%29,使得eq?f%27%28%5Ceta_1%29f%27%28%5Ceta_2%29%3D1

  以eq?%5Cxi为分界                     eq?f%27%28%5Ceta_1%29%3D%5Cfrac%7Bf%28a%29-f%28%5Cxi%29%7D%7Ba-%5Cxi%7D%2Cf%27%28%5Ceta_2%29%3D%5Cfrac%7Bf%28%5Cxi%29-f%28b%29%7D%7B%5Cxi-b%7D

  由eq?f%28%5Cxi%29%3Da&plus;b-%5Cxi得                     eq?f%27%28%5Ceta_1%29f%27%28%5Ceta_2%29%3D%5Cfrac%7Ba&plus;b-%5Cxi-a%7D%7B%5Cxi-a%7D.%5Cfrac%7Bb-a-b&plus;%5Cxi%7D%7Bb-%5Cxi%7D%3D1

 (3)至少存在一点eq?%5Cxi_1%5Cin%28a%2Cb%29,使得eq?f%27%28%5Cxi_1%29&plus;f%28%5Cxi_1%29-%5Cxi_1%3D1

       构造函数eq?F%28x%29%3De%5Ex%5Bf%28x%29-x%5D,有eq?F%28a%29%3DF%28b%29%3D0

     求导:eq?F%27%28x%29%3De%5Ex%5Bf%28x%29-x&plus;f%27%28x%29-1%5D

    根据罗尔定理可知,存在一点eq?%5Cxi_1%5Cin%28a%2Cb%29使得eq?F%27%28%5Cxi_1%29%3D0  得证

       

设函数f(x)在[a,b]上二阶可导,且eq?f%27%27%28x%29在[a,b]上恒大于或小于零,f(a)=f(b)=0

 证明:存在两个不同的点eq?%5Cxi_1%2C%5Cxi_2%20%5Cin%28a%2Cb%29,使得eq?2%5Bf%27%28%5Cxi_i%29%5D%5E2&plus;f%28%5Cxi_i%29f%27%27%28%5Cxi_i%29%3D0

  令eq?F%28x%29%3Df%5E2%28x%29f%27%28x%29eq?F%27%28x%29%3D2f%28x%29f%27%5E2%28x%29&plus;f%5E2%28x%29f%27%27%28x%29

 因为  eq?F%28a%29%3DF%28b%29%3D0 根据罗尔定理可知:存在一点eq?%5Cxi%20%5Cin%20%28a%2Cb%29,使得eq?F%27%28%5Cxi%29%3D0

  以eq?%5Cxi为分界点,将区间分为eq?%28a%2C%5Cxi%29%2C%28%5Cxi%2Cb%29,有eq?F%28a%29%3DF%28%5Cxi%29%3DF%28b%29%3D0

    再次使用罗尔定理可知存在两点eq?%5Cxi_1%5Cin%28a%2C%5Cxi%29%2C%5Cxi_2%5Cin%28%5Cxi%2Cb%29,使得           ​  eq?F%27%28%5Cxi_1%29%3DF%27%28%5Cxi_2%29%3D0

       

设f(x)在[a,b]上二阶可导,且eq?f%27%28a%29%3Df%27%28b%29%3D0,证明存在eq?%5Cxi%20%5Cin%28a%2Cb%29使得             eq?%7Cf%27%27%28%5Cxi%29%7C%5Cgeq%20%5Cfrac%7B4%7D%7B%28b-a%29%5E2%7D%7Cf%28b%29-f%28a%29%7C

     将函数a,b处展开           eq?f%28x%29%3Df%28a%29&plus;f%27%28a%29%28x-a%29&plus;%5Cfrac%7Bf%27%27%28%5Cxi_1%29%7D%7B2%21%7D%28x-a%29%5E2            eq?f%28x%29%3Df%28b%29&plus;f%27%28b%29%28x-b%29&plus;%5Cfrac%7Bf%27%27%28%5Cxi_2%29%7D%7B2%21%7D%28x-b%29%5E2    令eq?x%3D%5Cfrac%7Ba&plus;b%7D%7B2%7D,两式相减得到           eq?f%28b%29-f%28a%29&plus;%5Cfrac%7B%28b-a%29%5E2%7D%7B8%7D%5Bf%27%27%28%5Cxi_2%29-f%27%27%28%5Cxi_1%29%5D%3D0

    所以  eq?%5Cfrac%7B4%7Cf%28b%29-f%28a%29%7C%7D%7B%28b-a%29%5E2%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Bf%27%27%28%5Cxi_2%29-f%27%27%28%5Cxi_1%29%5D%5Cleq%20%5Cfrac%7B1%7D%7B2%7D%5B%7Cf%27%27%28%5Cxi_1%29%7C&plus;%7Cf%27%27%28%5Cxi_2%29%7C%5D

    若     eq?f%27%27%28%5Cxi%29%3Dmax%20%5C%7B%7Cf%27%28%5Cxi_1%29%7C%2C%7Cf%27%27%28%5Cxi_2%29%7C%5C%7D

    那么 eq?f%27%27%28%5Cxi%29%5Cgeq%20%5Cfrac%7B1%7D%7B2%7D%5B%7Cf%27%27%28%5Cxi_1%29%7C&plus;%7Cf%27%27%28%5Cxi_2%29%7C%5D%5Cgeq%20%5Cfrac%7B4%7Cf%28b%29-f%28a%29%7C%7D%7B%28b-a%29%5E2%7D

     

 设f(x)在区间[0,+∞),内具有二阶导数,且|f(x)|≤1,0<|f''(x)|≤2(0≤x<+∞)

  证明:eq?%7Cf%27%28x%29%7C%5Cleq%202%5Csqrt2

                eq?f%28x&plus;h%29%3Df%28x%29&plus;f%27%28x%29h&plus;%5Cfrac%7B1%7D%7B2%21%7Df%27%27%28%5Cxi%29h%5E2           eq?f%27%28x%29%3D%5Cfrac%7B1%7D%7Bh%7D%5Bf%28x&plus;h%29-f%28x%29%5D&plus;%5Cfrac%7B1%7D%7B2%7Df%27%27%28%5Cxi%29h%5Cleq%20%5Cfrac%7B2%7D%7Bh%7D&plus;h%5Cleq%202%5Csqrt2

       

设一质点在单位时间内由A从静止作直线运动到B停止,A,B两点间距离为1

 证明:该质点在(0,1)内总有一时刻得加速度的绝对值不小于4

      设y(t)是关于距离y对时间t的函数,eq?y%280%29%3Dy%27%280%29%3Dy%27%281%29%3D0%2Cy%281%29%3D1           eq?y%28t%29%3Dy%28t_0%29&plus;y%27%28t_0%29%28t-t_0%29&plus;%5Cfrac%7B1%7D%7B2%21%7Dy%27%27%28%5Cxi%29%28t-t_0%29%5E2

     令t=1/2,分贝在t=0,t=1处展开          eq?y%28%5Cfrac%7B1%7D%7B2%7D%29%3Dy%280%29&plus;%5Cfrac%7B1%7D%7B2%7Dy%27%280%29&plus;%5Cfrac%7B1%7D%7B8%7Dy%27%27%28%5Cxi_1%29      eq?y%28%5Cfrac%7B1%7D%7B2%7D%29%3Dy%281%29-%5Cfrac%7B1%7D%7B2%7Dy%27%281%29&plus;%5Cfrac%7B1%7D%7B8%7Dy%27%27%28%5Cxi%29

     所以有:eq?f%27%27%28%5Cxi_1%29-f%27%27%28%5Cxi_2%29%3D8              eq?f%27%27%28%5Cxi%29%3Dmin%5C%7B%7Cf%27%27%28%5Cxi_1%29%2Cf%27%27%28%5Cxi_2%29%7C%5C%7D%5Cgeq%204

 

       

设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又eq?f%5E2%280%29&plus;f%27%5E2%280%29%3D4

   证明:在(-2,2)上至少存在一点eq?%5Cxi,使得eq?f%28%5Cxi%29&plus;f%27%27%28%5Cxi%29%3D0

       eq?f%280%29-f%28-2%29%3D2f%27%28%5Cxi_1%29eq?f%282%29-f%280%29%3D2f%27%28%5Cxi_2%29

   由|f(x)|≤1,知eq?f%27%28%5Cxi_1%29%5Cleq%201%3Bf%27%28%5Cxi_2%29%5Cleq1

   令eq?F%28x%29%3Df%5E2%28x%29&plus;f%27%5E2%28x%29%2CF%28%5Cxi_1%29%5Cleq2%2CF%27%28%5Cxi_2%29%5Cleq2   因为F(x)在eq?%5B%5Cxi_1%2C%5Cxi_2%5D上连续,且F(0)=4,设F(x)在eq?%5B%5Cxi_1%2C%5Cxi_2%5D上的最大值在

   eq?%5Cxi%20%5Cin%28%5Cxi_1%2C%5Cxi_2%29%5Csubset%20%28-2%2C2%29处取到,则eq?F%28%5Cxi%29%5Cgeq%204且F(x)在eq?%5B%5Cxi_1%2C%5Cxi_2%5D上可导

     由费马定理有eq?F%27%28%5Cxi%29%3D0  即        eq?2f%28%5Cxi%29f%27%28%5Cxi%29&plus;2f%27%28%5Cxi%29f%27%27%28%5Cxi%29%3D0

  因为|f(x)|≤1,且eq?F%28%5Cxi%29%5Cgeq%204,所以eq?f%27%28%5Cxi%29%5Cneq0,于是就有                       eq?f%28%5Cxi%29&plus;f%27%27%28%5Cxi%29%3D0%2C%5Cxi%20%5Cin%28-2%2C2%29

 

 

(三)导数与微分的几何意义

             导数:切线的斜率

              微分:切线上的增量

 

        函数在某点处可导的充要条件:

                eq?%5Clim_%7Bx%5Cto%20x_0%5E%7B&plus;%7D%7D%5Cfrac%7Bf%28x%29-f%28x_0%29%7D%7Bx-x_0%7D%3D%5Clim_%7Bx%5Cto%20x_0%5E%7B-%7D%7D%5Cfrac%7Bf%28x%29-f%28x_0%29%7D%7Bx-x_0%7D%3DC

                eq?%5Clim_%7B%5CDelta%20x%5Cto%200%5E%7B&plus;%7D%7D%5Cfrac%7Bf%28x&plus;%5CDelta%20x%29-f%28x%29%7D%7B%5CDelta%20x%7D%3D%5Clim_%7B%5CDelta%20x%5Cto%200%5E%7B-%7D%7D%5Cfrac%7Bf%28x&plus;%5CDelta%20x%29-f%28x%29%7D%7B%5CDelta%20x%7D%3DC

        即 (1)存在

            (2)变化量既可以趋近0+也可以趋近0-

        简言之,左右导数存在且相等

        对于f(x)=φ(x)*|g(x)|形式,φ(x)可导,求f(x)的不可导点

        只要在g(x)=0的点处φ(x)≠0,即为不可导点      

  设f(x)连续

   (1) 若f(x0)≠0, 则|f(x0)|在x0处可导<=>f(x)在x0处可导
   (2)若f(x0)=0,则f(x0)|在x0处可导<=>f'(x0)=0
 

        设eq?f%28x%29%3D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20e%5E%7Bx%5E2%7D&plus;x%5E2%20%2C%26x%5Cneq0%20%5C%5C%200%2C%26x%3D0%20%5Cend%7Bmatrix%7D%5Cright.,则eq?%5Cint_%7B0%7D%5E%7Bx%7Df%28t%29dt是(A)

  (A)可导的奇函数

  (B)连续,但在x=0处不可导的奇函数

  (C)可导的偶函数

  (D)连续,但在x=0处不可导的偶函数

        eq?%5Cint_%7B0%7D%5E%7Bx%7Df%28t%29dt的导函数在0处的左右导数存在且相等,故可导

(三)导数的应用

 1.求渐近线 

   求某函数的斜渐近线:

      一般方法:        eq?%5Clim_%7Bx%5Cto%5Cpropto%20%7D%5Cfrac%7Bf%28x%29%7D%7Bx%7D%3Dk%2C%5Clim_%7Bx%5Cto%5Cpropto%20%7Df%28x%29-kx%3Db

   由此可知:斜渐近线的形式为:eq?y%3DAx&plus;b

   故可将函数泰勒展开为:eq?f%28x%29%3Df%28x_0%29&plus;f%27%28x_0%29*x&plus;%5Ccirc%20%28x%29

  2.方程根的个数即存在性

    1)存在性:罗尔定理和零点定理

    2)根的个数:单调性和罗尔定理推论

     罗尔定理推论:若在区间eq?Ieq?f%5E%7B%28n%29%7D%28x%29%5Cneq%200,则方程eq?f%28x%29在区间eq?I上最多有n个根

   证明:

        反证法:设函数eq?f%28x%29在区间eq?I上有n+1个根,分别为eq?x_0%2Cx_1%2Cx_2....x_n

        那么根据罗尔定理可知:每两个根之间必存在eq?%5Cxi%20_n使得eq?f%27%28%5Cxi_n%29%3D0

        继续eq?%5Cxi%20_n对使用罗尔定理知道每两个eq?%5Cxi之间必存在一点eq?%5Ceta使得eq?f%27%28%5Ceta%20_n%29%3D0

 以此类推得

 eq?%5Cexists%20x%2Cf%5E%7B%28n%29%7D%28x%29%3D0,故假设不成立,得证

 例题设f(x)在[1,2]连续,(1,2)可导且f(1)=1/2,f(2)=2,证明eq?%5Cexists%20%5Cxi%5Cin%281%2C2%29%2Cf%27%28%5Cxi%29%3D%5Cfrac%7B2f%28%5Cxi%29%7D%7B%5Cxi%7D

 1)分析法

   eq?xf%28x%29-2f%28x%29%3D0

   eq?%5Cfrac%7Bf%27%28x%29%7D%7Bf%28x%29%7D-%5Cfrac%7B2%7D%7Bx%7D%3D0             eq?%5B%5Cln%20f%28x%29%5D%27-%5B%5Cln%20x%5E2%5D%27%20%3D%5B%5Cln%20%5Cfrac%7Bf%28x%29%7D%7Bx%5E2%7D%5D%27%3D0

  令eq?F%28x%29%3D%5Cfrac%7Bf%28x%29%7D%7Bx%5E2%7D,即证F'(x)存在零点

   F(1)=F(2)=1/2,故存在一点eq?%5Cxi%20%5Cin%20%281%2C2%29%2CF%27%28%5Cxi%29%3D0

   2)微分方程法

        eq?y%27%3D%5Cfrac%7B2y%7D%7Bx%7D

         eq?%5Cint%20%5Cfrac%7By%27%7D%7By%7Ddy%3D%5Cint%20%5Cfrac%7B2%7D%7Bx%7Ddx

         eq?%5Cln%20y%3DC%5Cln%20x%5E2

         eq?%5Cln%5Cfrac%7By%7D%7Bx%5E2%7D%3DC        

  令eq?F%28x%29%3D%5Cfrac%7Bf%28x%29%7D%7Bx%5E2%7D,即证F'(x)存在零点

  F(1)=F(2)=1/2,故存在一点eq?%5Cxi%20%5Cin%20%281%2C2%29%2CF%27%28%5Cxi%29%3D0

 总结可得对于求证 :

  eq?f%27%28x%29&plus;%5Clambda%20f%28x%29%3D0,构造辅助函数:eq?F%28x%29%3De%5E%7B%5Clambda%20x%7Df%28x%29 eq?%5Calpha%20f%27%28x%29&plus;%5Cbeta%20f%28x%29%3D0,构造辅助函数:eq?F%28x%29%3De%5E%7B%5Cfrac%7B%5Cbeta%20%7D%7B%5Calpha%20%7D%20x%7Df%28x%29

不定积分

(一)两个基本概念

                原函数

                不定积分

(二)原函数的存在性

               1)如果函数eq?f%28x%29在区间eq?I上连续,则函数eq?f%28x%29在区间eq?I上必有原函数                 

                2)如果函数eq?f%28x%29在区间eq?I上有第一类间断点,则函数eq?f%28x%29在区间eq?I上没有原函数

(三)不定积分的性质 

             eq?d%5Cint%20f%28x%29dx%3Df%28x%29dx%2C%5Cint%20df%28x%29%3Df%28x%29&plus;C 

(四)基本积分公式

(五)三种主要积分法

(六)三类常见可积函数的积分

       1)有理函数积分

       2)三角函数积分:eq?%5Cint%20R%28sinx%2Ccosx%29dx

         (1)一般方法 (万能代换)

               令eq?tan%5Cfrac%7Bx%7D%7B2%7D%3Dteq?sinx%3D%5Cfrac%7B2t%7D%7B1&plus;t%5E2%7D%2Ccosx%3D%5Cfrac%7B1-t%5E2%7D%7B1&plus;t%5E2%7D%2Cdx%3D%5Cfrac%7B2%7D%7B1&plus;t%5E2%7Ddt

                                        

        3)简单无理积分eq?%5Cint%20R%28x%2C%5Csqrt%5Bn%5D%7B%5Cfrac%7Bax&plus;b%7D%7Bcx&plus;d%7D%7D%29dx

                   令eq?%5Csqrt%5Bn%5D%7B%5Cfrac%7Bax&plus;b%7D%7Bcx&plus;d%7D%7D%3Dt

 定积分

  (一)定积分的存在性

     1)必要条件,f(x)有界

     2)充分条件

    (1)f(x)在区间[a,b]上连续

    (2)f(x)在区间[a,b]有界且有有限个间断点

    (3)f(x)在区间[a,b]仅有有限个第一类间断点

 (二)定积分的计算

        公式:eq?%5Cint_%7B0%7D%5E%7B%5Cpi%20%7Dxf%28sinx%29dx%3D%5Cfrac%7B%5Cpi%20%7D%7B2%7D%5Cint_%7B0%7D%5E%7B%5Cpi%7Df%28sinx%29dx

      区间再现eq?%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx%5Coverset%7Bx%3Da&plus;b-t%7D%7B%5Crightarrow%7D%3D%5Cint_%7Ba%7D%5E%7Bb%7Df%28a&plus;b-t%29dt

                 eq?%5Cint%20%5Cfrac%7Ba%5C%3Asinx&plus;b%5C%3Acosx%7D%7Bc%5C%3Asinx&plus;d%5C%3Acosx%7Ddx%3D%5Cint%20%5Cfrac%7BA%28c%5C%3Acosx-d%5C%3Asinx%29&plus;B%28c%5C%3Asinx&plus;d%5C%3Acosx%29%7D%7Bc%5C%3Asinx&plus;d%5C%3Acosx%7Ddx

(三)变上限积分函数及其应用

(1)连续性:设f(x)在[a,b]上可积,则eq?%5Cint_%7Ba%7D%5E%7Bx%7Df%28t%29dt在[a,b]上连续

(2)可导性:设f(x)在[a,b]上连续,则eq?%5Cint_%7Ba%7D%5E%7Bx%7Df%28t%29dt在[a,b]上可导 

        如果f(x)在[a,b]上除了eq?x_0%5Cin%20%28a%2Cb%29处,其余地方都连续

      在x=eq?x_0处,原函数eq?F%28x%29%3D%5Cint_%7Ba%7D%5E%7Bx%7Df%28t%29dt

          1)f(x)连续 =>可导eq?F%27%28x_0%29%3Df%28x_0%29

          2) eq?x_0为可去间断点,则eq?F%27%28x_0%29%3D%5Clim_%7Bx%5Cto%20x_0%7Df%28x_0%29

        3)eq?x_0为跳跃间断点,则F(x)在eq?x_0处连续不可导

           ①f(x)在[a,b]上连续 => eq?%5Cint_%7Ba%7D%5E%7Bx%7Df%28t%29dt是f(x)在[a,b]上的原函数

          ②f(x)在[a,b]上有第一类间断点 ≠> eq?%5Cint_%7Ba%7D%5E%7Bx%7Df%28t%29dt是f(x)在[a,b]上的原函数

            例题:设f(x)连续,且f(0)≠0,求极限eq?%5Clim_%7Bx%5Cto%200%7D%5Cfrac%7B%5Cint_%7B0%7D%5E%7Bx%7Dtf%28x-t%29dt%7D%7Bx%5Cint_%7B0%7D%5E%7Bx%7Df%28x-t%29dt%7D

             ①              令x-t=u,  eq?%5Clim_%7Bx%5Cto%200%7D%5Cfrac%7Bx%5Cint_%7B0%7D%5E%7Bx%7Df%28u%29du-%5Cint_%7B0%7D%5E%7Bx%7Duf%28u%29du%7D%7Bx%5Cint_%7B0%7D%5E%7Bx%7Df%28u%29du%7D

洛必达:                  eq?%5Clim_%7Bx%5Cto%200%7D%5Cfrac%7B%5Cint_%7B0%7D%5E%7Bx%7Df%28u%29du&plus;xf%28x%29-xf%28x%29%7D%7B%5Cint_%7B0%7D%5E%7Bx%7Df%28u%29du&plus;xf%28x%29%7D

 微分中值:              eq?%5Clim_%7Bx%5Cto%200%7D%5Cfrac%7Bxf%28%5Cxi%20%29%7D%7Bxf%28%5Cxi%29&plus;xf%28x%29%7D%3D%5Cfrac%7B1%7D%7B2%7D

           ②                 令x-t=u,  eq?%5Clim_%7Bx%5Cto%200%7D%5Cfrac%7Bx%5Cint_%7B0%7D%5E%7Bx%7Df%28u%29du-%5Cint_%7B0%7D%5E%7Bx%7Duf%28u%29du%7D%7Bx%5Cint_%7B0%7D%5E%7Bx%7Df%28u%29du%7D          eq?1-%5Clim_%7Bx%5Cto%200%7D%5Cfrac%7B%5Cint_%7B0%7D%5E%7Bx%7Duf%28u%29du%7D%7Bx%5Cint_%7B0%7D%5E%7Bx%7Df%28u%29du%7D

  等价代换:                eq?1-%5Clim_%7Bx%5Cto%200%7D%5Cfrac%7B%5Cint_%7B0%7D%5E%7Bx%7Duf%280%29du%7D%7Bx%5Cint_%7B0%7D%5E%7Bx%7Df%280%29du%7D                           eq?1-%5Clim_%7Bx%5Cto%200%7D%5Cfrac%7B%5Cfrac%7Bx%5E2%7D%7B2%7Df%280%29%7D%7Bx%5E2f%280%29%7D%3D%5Cfrac%7B1%7D%7B2%7D                                        

        证明积分不等式的常用方法:

                1)定积分不等式性质

                2)变量代换

                3)积分中值

 

                4)变上限积分

                5)柯西积分不等式:

                        eq?%28%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29g%28x%29dx%29%5E2%5Cleq%20%5Cint_%7Ba%7D%5E%7Bb%7Df%5E2%28x%29dx%5Cint_%7Ba%7D%5E%7Bb%7Dg%5E2%28x%29dx

               已知函数f(x)在区间[a,b]上连续且单调增加

               证明:eq?%5Cint_%7Ba%7D%5E%7Bb%7D%28%5Cfrac%7Bb-x%7D%7Bb-a%7D%29%5Enf%28x%29dx%5Cleq%5Cfrac%7B1%7D%7Bn&plus;1%7D%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29dx

                令eq?F%28x%29%3D%28b-x%29%5En%5Cint_%7Bx%7D%5E%7Bb%7Df%28t%29dt-%28n&plus;1%29%5Cint_%7Bx%7D%5E%7Bb%7D%28b-t%29%5Enf%28t%29dt

                eq?F%27%28x%29%3D-n%28b-x%29%5E%7Bn-1%7D%5Cint_%7Bx%7D%5E%7Bb%7Df%28t%29dt-%28b-x%29%5Enf%28x%29&plus;%28n&plus;1%29%28b-x%29%5Enf%28x%29

                            eq?%3Dn%28b-x%29%5En%5Bf%28x%29-f%28%5Cxi%29%5D%5Cleq%200%2C%5Cxi%20%5Cin%28x%2Cb%29

                因为F(b)=0,且F(x)单减,F(x)在[a,b]上恒大于0

                

                证明不等式:eq?%5Cln%20%28n&plus;1%29%3C%201&plus;%5Cfrac%7B1%7D%7B2%7D&plus;%5Cfrac%7B1%7D%7B3%7D&plus;......&plus;%5Cfrac%7B1%7D%7Bn%7D%3C1&plus;%5Cln%20n

                由于        eq?%5Cint_%7Bk%7D%5E%7Bk&plus;1%7D%5Cfrac%7B1%7D%7Bx%7Ddx%3C%5Cfrac%7B1%7D%7Bx%7D%3C%5Cint_%7Bk%7D%5E%7Bk-1%7D%5Cfrac%7B1%7D%7Bx%7Ddx

                所以        eq?%5Cln%20%28n&plus;1%29%3C%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Bk%7D%3C1&plus;%5Cln%20n

                

反常积分

 (一)无穷区间上的反常积分

         定义:定积分取极限        eq?%5Cint_%7Ba%7D%5E%7B&plus;%5Cinfty%20%7Df%28x%29dx%3D%5Clim_%7Bt%5Cto%20&plus;%5Cinfty%7D%5Cint_%7Ba%7D%5E%7Bt%7Df%28x%29dx

        判别:

             (1)比较审敛法

             (2)比值审敛法

             (3)p积分:eq?%5Cint_%7Ba%7D%5E%7B&plus;%5Cinfty%7D%5Cfrac%7B1%7D%7Bx%5Ep%7Ddx%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20p%3E%201%20%26%20%5C%5C%20p%5Cleq%201%26%20%5Cend%7Bmatrix%7D%5Cright.%28a%3E0%29发散

(二)无界函数的反常积分

 定义: eq?%5Cint_%7Ba%7D%5E%7Bb%20%7Df%28x%29dx%3D%5Clim_%7Bt%5Cto%20a%5E&plus;%7D%5Cint_%7Bt%7D%5E%7Bb%7Df%28x%29dx

   判别同上

     p积分:eq?%5Cint_%7Ba%7D%5E%7B&plus;%5Cinfty%7D%5Cfrac%7B1%7D%7Bx%5Ep%7Ddx%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20p%5Cgeq%201%20%26%20%5C%5C%20p%3C%201%26%20%5Cend%7Bmatrix%7D%5Cright.收敛

 eq?%5CGamma函数

    定义:eq?%5CGamma%20%28s%29%3D%5Cint_%7B0%7D%5E%7B&plus;%5Cinfty%7Dx%5E%7Bs-1%7De%5E%7B-x%7Dds%2Cs%3E0收敛

    递推公式:eq?%5CGamma%20%28s&plus;1%29%3Ds%5CGamma%20%28s%29%20%3D%3E%20%5CGamma%20%28n&plus;1%29%3Dn%21   

  几何应用

     平面区域由r=r(θ),θ=α,θ=β围成

     面积:        eq?S%3D%5Cint_%7B%5Calpha%20%7D%5E%7B%5Cbeta%20%7Dd%5Ctheta%20%5Cint_%7B0%7D%5E%7Br%28%5Ctheta%20%29%7Drdr   

    旋转体体积

     封闭区域D绕区域外直线ax+by+c=0旋转所得旋转体体积

        区域D上某点到旋转轴得距离:                                    eq?r%28x%2Cy%29%3D%5Cfrac%7B%7Cax&plus;by&plus;c%7C%7D%7B%5Csqrt%7Ba%5E2&plus;b%5E2%7D%7D

        旋转体体积:  eq?V%3D2%5Cpi%20%5Ciint_%7BD%7Dr%28x%2Cy%29d%5Csigma

            (1) 取区域D上一极小区域eq?%5Csigma,绕旋转轴旋转得一圆环体积                                            (2)再次对D区域所有小eq?%5Csigma积分得体积

                曲线弧长      

   旋转体侧面积  

                        eq?S%3D2%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7Df%28x%29ds%3D2%5Cpi%20%5Cint_%7Ba%7D%5E%7Bb%7D%5Csqrt%7B1&plus;f%27%5E2%28x%29%7Ddx

      (1)取曲线上极小一段弧s,绕旋转轴旋转得一圆环面积                                                        (2)再次对S上所有小s积分可得所有小s得面积和

   物理应用

                

常微分方程

(一)常微分方程的基本概念

                        

(二)一阶微分方程

      1.可分离变量方程

      2.齐次方程

         eq?y%27%3Df%28%5Cfrac%7By%7D%7Bx%7D%29%2C%5Ctfrac%7By%7D%7Bx%7D%3Du%2Cy%27%3Du&plus;xu%27

      3.线性方程

         eq?y%27&plus;P%28x%29y%3DQ%28x%29

        通解为:eq?y%3De%5E%7B-%5Cint%20P%28x%29dx%7D%5B%5Cint%20Q%28x%29e%5E%7B%5Cint%20P%28x%29dx%7D&plus;C%5D

     4.伯努利方程

       eq?y%27&plus;P%28x%29y%3DQ%28x%29y%5E%5Calpha

      令eq?y%5E%7B1-%5Calpha%20%7D%3Dt%2Cy%5E%7B-%5Calpha%20%7Dy%27%3Dt%27

       等式两边同除于eq?y%5E%5Calpha:                                             eq?y%5E%7B-%5Calpha%20%7Dy%27&plus;P%28x%29y%5E%7B1-%5Calpha%20%7D%3DQ%28x%29

       最终化为关于t的一阶线性方程:                            eq?t%27&plus;P%28x%29t%3DQ%28x%29                                

      5.全微分方程

        eq?P%28x%2Cy%29dx&plus;Q%28x%2Cy%29dy%3D0

       判定:eq?%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20x%7D

 (三)可降阶的高阶方程

             1)eq?y%27%27%3Df%28x%29

             2)eq?y%27%27%3Df%28x%2Cy%27%29

                  令eq?y%27%3Dp%2Cy%27%27%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20p%7D%7B%5Cmathrm%7Bd%7D%20x%7D

             3)eq?y%27%27%3Df%28y%2Cy%27%29

                  令eq?y%27%3Dp%2Cy%27%27%3D%5Cfrac%7Bdy%7D%7Bdx%7D%5Cfrac%7Bdp%7D%7Bdy%7D%3Dp%5Cfrac%7Bdp%7D%7Bdy%7D

                        

(四)高阶线性微分方程

    1.线性微分方程的解的结构
        齐次方程
          y"+ p(x)y' +q(x)y=0        (1)
        非齐次方程

           y" + p(x)y' +q(x)y= f(x)        (2)
        定理1:如果eq?y_1%28x%29eq?y_2%28x%29是齐次方程(1)的两个线性无关的特解,那么   eq?y%3DC_1y_1%28x%29&plus;C_2y_2%28x%29为该方程通解

       定理2:如果eq?y%5E*是非齐次方程(2)的一个特解,那么                                                                              eq?y%3DC_1y_1%28x%29&plus;C_2y_2%28x%29&plus;y%5E*%28x%29为该方程通解

             定理3:如果eq?y%5E*_1%28x%29eq?y%5E*_2%28x%29是非齐次方程(1)的两个线性无关的特解,那么                                               eq?y%3Dy%5E*_1%28x%29-y%5E*_2%28x%29为齐次方程的解

             定理4:如果eq?y%5E*_1%28x%29eq?y%5E*_2%28x%29分别是非齐次方程

                 eq?y%27%27&plus;p%28x%29y%27&plus;q%28x%29y%3Df_1%28x%29

                 eq?y%27%27&plus;p%28x%29y%27&plus;q%28x%29y%3Df_2%28x%29

            那么 :eq?y%5E*_1%28x%29&plus;y%5E*_2%28x%29eq?y%27%27&plus;p%28x%29y%27&plus;q%28x%29y%3Df_1%28x%29&plus;f_1%28x%29的一个特解
     2.常系数线性微分方程

                                

     3.常系数非齐次线性微分方程

    4.欧拉方程

        形式:eq?x%5Eny%5E%7B%28n%29%7D&plus;a_1x%5E%7Bn-1%7Dy%5E%7Bn-1%7D&plus;......&plus;a_%7Bn-1%7Dxy%27&plus;a_ny%3Df%28x%29

       令eq?x%3De%5Et%2Cdx%3De%5Etdt%3Dxdt%2C%5Cfrac%7Bdx%7D%7Bdt%7D%3Dx

     (1) eq?%5Cfrac%7Bdy%7D%7Bdx%7D%5Cfrac%7Bdx%7D%7Bdt%7D%3D%5Cfrac%7Bdy%7D%7Bdt%7D%3Dxy%27

     (2)eq?%5Cfrac%7Bd%5E2y%7D%7Bdtdx%7D%5Cfrac%7Bdx%7D%7Bdt%7D%3D%28xy%27&plus;y%27%27%29x%3D%5Cfrac%7Bd%5E2y%7D%7Bdt%5E2%7D                     eq?%5Cfrac%7Bd%5E2y%7D%7Bdt%5E2%7D%3Dx%5E2y%27%27&plus;xy%27%3Dx%5E2y%27%27&plus;%5Cfrac%7Bdy%7D%7Bdt%7D

            eq?%5Cfrac%7Bd%5E2y%7D%7Bdt%5E2%7D-%5Cfrac%7Bdy%7D%7Bdt%7D%3Dx%5E2y%27%27

          以此类推,设D为y对t的求导,则有                                           eq?x%5Eky%5E%7B%28k%29%7D%3DD%28D-1%29......%28D-k&plus;1%29y

        设p(x)在区间[a,b]上连续,y(x)在区间[a,b]上有二阶导数,且满足

                y''(x)+p(x)y'(x)-y(x)=0,y(a)=y(b)=0

        则在[a,b]上y(x)

                y(a)=y(b)=0,若存在极大值点x,则有y''(x)-y(x)=0,y''(x)>0,不符合

                同理,若存在极小值点x,则有y''(x)-y(x)=0,y''(x)<0,不符合

                故y(x)在[a,b]上既没有正的极大值也没有负的极小值

        

        微分方程eq?%5Cfrac%7Bdy%7D%7Bdx%7D&plus;%5Cfrac%7By%7D%7Bx%7D%3D2y%5E2%5Cln%20x满足初始条件eq?y%7C_%7Bx%3De%7D%3D%5Cfrac%7B1%7D%7Be%7D的特解为

        令eq?t%3D%5Cfrac%7B1%7D%7By%7D%2Cdt%3D-%5Cfrac%7B1%7D%7By%5E2%7Ddy,原式化为eq?-%5Cfrac%7Bdt%7D%7Bdx%7D&plus;%5Cfrac%7Bt%7D%7Bx%7D%3D2%5Cln%20x

                eq?t%3De%5E%7B%5Cint%20%5Cfrac%7B1%7D%7Bx%7Ddx%7D%5B%5Cint%20-2%5Cln%20%28x%29e%5E%7B%5Cint%20-%5Cfrac%7B1%7D%7Bx%7Ddx%7D&plus;C%5D

                eq?y%3D%5Cfrac%7B1%7D%7B2x-x%5Cln%5E2%20x%7D

        微分方程eq?%28y%5E2-2x%29dy-ydx%3D0满足x=1时y=2的特解是

                eq?%5Cfrac%7Bdx%7D%7Bdy%7D&plus;2%5Cfrac%7Bx%7D%7By%7D%3Dy%2Cx%3De%5E%7B-%5Cint%20%5Cfrac%7B2%7D%7By%7Ddx%7D%5B%5Cint%20ye%5E%7B%5Cint%20%5Cfrac%7B2%7D%7By%7Ddx%7D&plus;C%5D%3D%3Ey%3D2%5Csqrt%20x

        微分方程eq?%28y%5E2&plus;1%29dx%3Dy%28y-2x%29dy的通解是

                eq?y%5E2dx&plus;2xydy%3Dy%5E2dy-dx%3D%3Exy%5E2%3D%5Cfrac%7B1%7D%7B3%7Dy%5E3-x&plus;C

        微分方程eq?%281&plus;e%5E%7B-%5Cfrac%7Bx%7D%7By%7D%7D%29ydx&plus;%28y-x%29dy%3D0的通解

                令eq?%5Cfrac%7Bx%7D%7By%7D%3Du%2C%5Cfrac%7Bdx%7D%7Bdy%7D%3Du&plus;y%5Cfrac%7Bdu%7D%7Bdy%7D,原式化为eq?%5Cfrac%7B%7D%7B%7Deq?%5Cfrac%7Bdu%7D%7Bdy%7D%3D-%5Cfrac%7B1%7D%7By%7D%28%5Cfrac%7B1&plus;ue%5E%7B-u%7D%7D%7B1&plus;e%5E%7B-u%7D%7D%29

                eq?%5Cfrac%7Be%5Eu&plus;1%7D%7Be%5Eu&plus;u%7Ddu%3D-%5Cfrac%7B1%7D%7By%7Ddy%5CRightarrow%20e%5Eu&plus;u%3D%5Cfrac%7BC%7D%7By%7D%5CRightarrow%20x&plus;ye%5E%7B%5Cfrac%7Bx%7D%7By%7D%7D%3DC

        微分方程eq?3e%5Extanydx&plus;%281-e%5Ex%29sec%5E2ydy%3D0的通解是

                eq?3tanyd%28e%5Ex-1%29%3D%28e%5Ex-1%29d%28tany%29%5CRightarrow%203%5Cfrac%7Bd%28e%5Ex-1%29%7D%7Be%5Ex-1%7D%3D%5Cfrac%7Bd%28tany%29%7D%7Btany%7D

                所以eq?tany%3DC%28e%5Ex-1%29%5E3

        微分方程eq?ydx-xdy%3Dx%5E2ydy%5CRightarrow%20ydy%3D%5Cfrac%7Bydx-xdy%7D%7Bx%5E2%7D%5CRightarrow%20%5Cfrac%7By%5E2%7D%7B2%7D&plus;%5Cfrac%7By%7D%7Bx%7D%3DC 

        

        设函数y=f(x)满足方程eq?y%27%27&plus;2y%27&plus;y%3D3xe%5E%7B-x%7D%2Cy%280%29%3D%5Cfrac%7B1%7D%7B3%7D%2Cy%27%280%29%3D-2

        求反常积分eq?%5Cint_%7B0%7D%5E%7B&plus;%5Cinfty%7Df%28x%29dx

                由eq?%28r&plus;1%29%5E2%3D0%5CRightarrow%20r_1%3Dr_2%3D-1可设eq?f%28x%29%3D%28ax%5E3&plus;bx%5E2&plus;c_1x&plus;c_2%29e%5E%7B-x%7D

                根据表达式可知eq?%5Clim_%7Bx%5Cto%20&plus;%5Cinfty%7Df%28x%29%3Df%27%28x%29%3D0

                eq?%5Cint_%7B0%7D%5E%7B&plus;%5Cinfty%7Df%28x%29dx%3D%5Cint_%7B0%7D%5E%7B&plus;%5Cinfty%7D3xe%5E%7B-x%7D-2f%27%28x%29-f%27%27%28x%29dx%3D3&plus;2f%280%29&plus;f%27%280%29%3D%5Cfrac%7B5%7D%7B3%7D

        

        已知f(xy)=yf(x)+xf(y)对任意的x,y均成立,且f'(1)=e,则f(xy)的极小值为

                eq?f%27%28x%29%3D%5Clim_%7B%5CDelta%20x%5Cto%200%7D%3D%5Cfrac%7Bf%28x&plus;%5CDelta%20x%29-f%28x%29%7D%7B%5CDelta%20x%7D%3D%5Cfrac%7Bf%5Bx%281&plus;%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%29%5D-f%28x%29%7D%7B%5CDelta%20x%7D

                eq?%3D%5Cfrac%7B%281&plus;%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%29f%28x%29&plus;xf%281&plus;%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%29-f%28x%29%7D%7B%5CDelta%20x%7D%3D%5Cfrac%7Bf%28x%29%7D%7Bx%7D&plus;%5Cfrac%7Bf%281&plus;%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%29%7D%7B%5Cfrac%7B%5CDelta%20x%7D%7Bx%7D%7D%3Df%27%281%29&plus;%5Cfrac%7Bf%28x%29%7D%7Bx%7D

        得到微分方程eq?f%27%28x%29-%5Cfrac%7Bf%28x%29%7D%7Bx%7D%3De%5CRightarrow%20f%28x%29%3Dex%5Cln%20x

        令eq?t%3Dxy%2Cf%28t%29%3Det%5Cln%20t%5CRightarrow%20f%27%28t%29%3De%28%5Cln%20t&plus;1%29%5CRightarrow%20f_%7Bmin%7D%28t%29%3Df%28%5Cfrac%7B1%7D%7Be%7D%29%3D-1

 

多元函数微分学

  (一)重极限 连续 偏导 全微分

       (1)重极限

                  eq?%5Clim_%7B%28x%2Cy%29%5Cto%20%28x_0%2Cy_0%29%7Df%28x%2Cy%29%3DA

                [注]:任意方式趋向eq?%28x_0%2Cy_0%29

证明极限不存在:eq?%5Clim_%7B%28x%2Cy%29%5Cto%20%280%2C0%29%7D%5Cfrac%7Bxy%5E2%7D%7Bx%5E2&plus;y%5E4%7D

                        eq?%5Clim_%7By%3Dkx%2Cx%5Cto%200%7D%5Cfrac%7Bxy%5E2%7D%7Bx%5E2&plus;y%5E4%7D%3D%5Cfrac%7Bkx%5E3%7D%7Bx%5E2&plus;k%5E4x%5E4%7D%3D%5Cfrac%7Bkx%7D%7B1&plus;k%5E4x%5E2%7D%3D0

                        eq?%5Clim_%7Bx%3Dy%5E2%2Cy%5Cto%200%7D%5Cfrac%7Bxy%5E2%7D%7Bx%5E2&plus;y%5E4%7D%3D%5Cfrac%7By%5E4%7D%7By%5E4&plus;y%5E4%7D%3D%5Cfrac%7B1%7D%7B2%7D

 (2)连续
 (3)偏导数

                     eq?f_x%28x_0%2Cy_0%29%3D%5Clim_%7B%5CDelta%20x%5Cto%200%7D%5Cfrac%7Bf%28x_0&plus;%5CDelta%20x%2Cy_0%29-f%28x_0%2Cy_0%29%7D%7B%5CDelta%20x%7D%3D%5Cfrac%7Bd%7D%7Bdx%7Df%28x%2Cy_0%29%7C_%7Bx%3Dx_0%7D

                     eq?f_y%28x_0%2Cy_0%29%3D%5Clim_%7B%5CDelta%20y%5Cto%200%7D%5Cfrac%7Bf%28x_0%2Cy_0&plus;%5CDelta%20y%29-f%28x_0%2Cy_0%29%7D%7B%5CDelta%20y%7D%3D%5Cfrac%7Bd%7D%7Bdy%7Df%28x_0%2Cy%29%7C_%7By%3Dy_0%7D

(4)全微分

      定义       eq?%5CDelta%20z%3Df%28x&plus;%5CDelta%20x%2Cy&plus;%5CDelta%20y%29-f%28x%2Cy%29%3DA%5CDelta%20x&plus;B%5CDelta%20y&plus;%5Ccirc%20%28%5Crho%20%29

                       eq?%5Cexists一组A,B使得上式子成立即可微

    判定:

      1)必要条件:eq?f_x%28x_0%2Cy_0%29%2Cf_y%28x_0%2Cy_0%29存在

      2)充分条件:eq?f_x%28x%2Cy%29%2Cf_y%28x%2Cy%29eq?f%28x_0%2Cy_0%29处连续

       3)定义

           a)eq?f_x%28x_0%2Cy_0%29%2Cf_y%28x_0%2Cy_0%29是否都存在

           b)eq?%5Clim_%7B%5CDelta%20x%5Cto0%2C%5CDelta%20y%5Cto0%7D%5Cfrac%7B%5CDelta%20z-f_x%28x_0%2Cy_0%29%5CDelta%20x-f_y%28x_0%2Cy_0%29%5CDelta%20y%7D%7B%5Csqrt%7B%5CDelta%5E2%20x&plus;%5CDelta%20%5E2y%7D%7D是否为0

例题:eq?f_x%28x_0%2Cy_0%29存在,eq?f_y%28x_0%2Cy_0%29eq?%28x_0%2Cy_0%29处连续,证明eq?f%28x%2Cy%29eq?%28x_0%2Cy_0%29处可微

                  证明:      eq?%5CDelta%20z%3Df%28x&plus;%5CDelta%20x%2Cy&plus;%5CDelta%20y%29-f%28x%2Cy%29                                        ​​​​​​                        eq?%5CDelta%20z%3Df%28x&plus;%5CDelta%20x%2Cy&plus;%5CDelta%20y%29-f%28x&plus;%5CDelta%20x%2Cy%29&plus;f%28x&plus;%5CDelta%20x%2Cy%29-f%28x%2Cy%29

                  因为eq?f_y%28x_0%2Cy_0%29eq?%28x_0%2Cy_0%29处连续,所以微分中值定理得                  ​​​​​​​        ​​​​​​​              ​​​​​​​        ​​​​​​​          eq?f%28x_0&plus;%5CDelta%20x%2Cy_0&plus;%5CDelta%20y%29-f%28x_0&plus;%5CDelta%20x%2Cy_0%29%3Df%27_y%28x_0&plus;%5CDelta%20x%2Cy_0&plus;%5Ctheta%20%5CDelta%20y%29%5CDelta%20y

                                                                                            eq?%3Df_y%28x_0%2Cy_0%29%5CDelta%20y&plus;%5Ccirc%20%28%5CDelta%20y%29

                  因为eq?f_x%28x_0%2Cy_0%29存在,所以根据偏导数定义eq?%5Cfrac%7Bf%28x&plus;%5CDelta%20x%2Cy%29-f%28x%2Cy%29%7D%7B%5CDelta%20x%7D%3Df%27_x%28x%2Cy%29

                  得 eq?f%28x_0&plus;%5CDelta%20x%2Cy_0%29-f%28x_0%2Cy_0%29%3Df_x%28x_0%2Cy_0%29%5CDelta%20x&plus;%5Ccirc%20%28%5CDelta%20x%29

                  eq?%5CDelta%20z%3Df_x%28x_0%2Cy_0%29%5CDelta%20x&plus;f_y%28x_0%2Cy_0%29%5CDelta%20y&plus;%5Ccirc%20%28%5CDelta%20x%29&plus;%5Ccirc%20%28%5CDelta%20y%29

                  eq?%5Cfrac%7B%5Ccirc%20%28%5CDelta%20x%29&plus;%5Ccirc%20%28%5CDelta%20y%29%7D%7B%5Csqrt%7B%5CDelta%20%5E2x&plus;%5CDelta%20%5E2y%7D%7D%3C%20%5Cfrac%7B%5Ccirc%20%28%5CDelta%20x%29%7D%7B%5Csqrt%7B%5CDelta%20%5E2x%7D%7D&plus;%5Cfrac%7B%5Ccirc%20%28%5CDelta%20y%29%7D%7B%5Csqrt%7B%5CDelta%20%5E2y%7D%7D%3D0&plus;0%3D0

                  得证

 

(二)偏导数与全微分的计算

 1)复合函数求导法
 2)隐函数求导法

  1.由一个方程所确定的隐函数

    设eq?F%28x%2Cy%2Cz%29有一阶连续偏导数,  eq?F_z%5Cneq%200,知道eq?z%3Dz%28x%2Cy%29由  eq?F%28x%2Cy%2Cz%29 所确定

      隐函数存在定理 :

      公式法:  eq?%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20x%7D%3D-%5Cfrac%7BF%27_x%7D%7BF%27_z%7D%2C%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20y%7D%3D-%5Cfrac%7BF%27_y%7D%7BF%27_z%7D       

   2.由方程组确定的隐函数

    设eq?u%28x%2Cy%29%2Cv%28x%2Cy%29是由                                               eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20F%28x%2Cy%2Cu%2Cv%29%3D0%5C%5CG%28x%2Cy%2Cu%2Cv%29%3D0%20%5Cend%7Bmatrix%7D%5Cright.所确定

     (1) 等式两边求导                                                   eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20F_x&plus;F_u%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D&plus;F_v%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D0%5C%5C%20G_x&plus;G_u%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D&plus;G_v%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D0%20%5Cend%7Bmatrix%7D%5Cright.                           eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20F_y&plus;F_u%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D&plus;F_v%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%3D0%5C%5C%20G_y&plus;G_u%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D&plus;G_v%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%3D0%20%5Cend%7Bmatrix%7D%5Cright.

    (2)微分形式的不变性                                    eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20F_xdx&plus;F_ydy&plus;F_udu&plus;F_vdv%3D0%5C%5C%20G_xdx&plus;G_ydy&plus;G_udu&plus;G_vdv%3D0%20%5Cend%7Bmatrix%7D%5Cright.

 例题:若对任意t>0有,eq?f%28tx%2Cty%29%3Dt%5Enf%28x%2Cy%29,则称函数为n次齐次方程

    证明:eq?f%28x%2Cy%29可微是n次齐次函数 <=> eq?x%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D&plus;y%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3Dnf%28x%2Cy%29

   必要性:

   由        eq?f%28tx%2Cty%29%3Dt%5Enf%28x%2Cy%29

   可得: eq?xf%27_1%28tx%2Cty%29&plus;yf%27_2%28tx%2Cty%29%3Dnt%5E%7Bn-1%7Df%28x%2Cy%29

   令t=1:eq?xf%27_1%28x%2Cy%29&plus;yf%27_2%28x%2Cy%29%3Dnf%28x%2Cy%29

   得证:  eq?x%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D&plus;y%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3Dnf%28x%2Cy%29

   充分性:

   令        eq?F%28t%29%3Df%28tx%2Cty%29%2C%5Cfrac%7BdF%7D%7Bdt%7D%3Dxf%27_1%28tx%2Cty%29&plus;yf%27_2%28tx%2Cty%29

   则:eq?t%5Cfrac%7BdF%7D%7Bdt%7D%3Dtxf%27_1%28tx%2Cty%29&plus;tyf%27_2%28tx%2Cty%29%3Dnf%28tx%2Cty%29%3DnF%28t%29

   有:eq?%5Cfrac%7BdF%7D%7BF%7D%3D%5Cfrac%7Bn%7D%7Bt%7Ddt%5C%3B%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20%5C%3A%20F%28t%29%3DCt%5En

  因为eq?f%28tx%2Cty%29%3Dt%5Enf%28x%2Cy%29%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20%5C%3B%20F%281%29%3DC,所以eq?C%3Df%28x%2Cy%29

   结论:如果eq?f%28x%2Cy%29可微是n次齐次函数 <=> eq?x%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D&plus;y%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3Dnf%28x%2Cy%29             

(三)极值与最值

(1)无条件极值
(2)条件极值与拉格朗日函数
(3)最大值最小值        

 设eq?f%28x%2Cy%29%3D%5Cfrac%7Bx%7D%7By%5E2%7De%5E%7B-%28%5Cfrac%7Bx%7D%7By%7D%29%5E2%7D%2Cy%5Cneq%200 ,  记 eq?I_1%3D%5Clim_%7By%5Cto%200%7D%5B%5Cint_%7B0%7D%5E%7B1%7Df%28x%2Cy%29dx%5D%2CI_2%3D%5Cint_%7B0%7D%5E%7B1%7D%5B%5Clim_%7By%5Cto%200%7Df%28x%2Cy%29%5Ddx

         eq?I_1%3D-%5Cfrac%7B1%7D%7B2%7De%5E%7B-%28%5Cfrac%7Bx%7D%7By%7D%29%5E2%7D%7C%5E1_0%3D%5Cfrac%7B1%7D%7B2%7D%2CI_2%3D0

           

        设y=f(x,t),而t是关于F(xy,t)=0所确定的关于x,y函数,其中f,F具有就一阶连续偏导数

   则eq?%5Cfrac%7Bdy%7D%7Bdx%7D%3D​​​​​​​eq?dy%3Df%27_xdx&plus;f%27_tdt%3Df%27_xdx-f%27_t%5B%5Cfrac%7BF%27_x%7D%7BF%27_t%7Ddx&plus;%5Cfrac%7BF%27_y%7D%7BF%27_t%7Ddy%5D

      eq?%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7Bf%27_xF%27_t-f%27_tF%27_x%7D%7Bf%27_tF%27_y&plus;F%27_t%7D

        

        设eq?f%28x%2Cy%29eq?G%28x%2Cy%29均为可微函数,且eq?G%27_y%28x%2Cy%29%5Cneq%200,已知点eq?%28x_0%2Cy_0%29eq?f%28x%2Cy%29

        在约束条件下eq?G%28x%2Cy%29%3D0下的一个极值点,下列选项正确的是

                (A)若eq?f%27_x%28x_0%2Cy_0%29%3D0,则eq?f%27_y%28x_0%2Cy_0%29%3D0    

                (B)若eq?f%27_x%28x_0%2Cy_0%29%3D0,则eq?f%27_y%28x_0%2Cy_0%29%5Cneq0    

                (C)若eq?f%27_x%28x_0%2Cy_0%29%5Cneq0,则eq?f%27_y%28x_0%2Cy_0%29%3D0    

                (D)若eq?f%27_x%28x_0%2Cy_0%29%5Cneq0,则eq?f%27_y%28x_0%2Cy_0%29%5Cneq0

        构造拉格朗日函数:eq?F%28x%2Cy%2C%5Clambda%20%29%3Df%28x%2Cy%29&plus;%5Clambda%20G%28x%2Cy%29

        有:eq?F%27_x%3Df%27_x&plus;%5Clambda%20G%27_x%2CF%27_y%3Df%27_y&plus;%5Clambda%20G%27_y%2CF%27_%5Clambda%3DG%28x%2Cy%29

         所以:eq?%5Clambda%3D-%5Cfrac%7Bf%27_y%28x_0%2Cy_0%29%7D%7BG%27_y%28x_0%2Cy_0%29%7D%2Cf%27_x%28x_0%2Cy_0%29%3D%5Cfrac%7Bf%27_y%28x_0%2Cy_0%29%7D%7BG%27_y%28x_0%2Cy_0%29%7DG%27_x%28x_0%2Cy_0%29 

        

        已知eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20z%3Dx%5E2&plus;y%5E2%5C%5C%20x%5E2&plus;2y%5E2&plus;3z%5E2%3D20%20%5Cend%7Bmatrix%7D%5Cright.,求eq?%5Cfrac%7Bdy%7D%7Bdx%7D%2C%5Cfrac%7Bdz%7D%7Bdx%7D

                eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20dz%3D2xdx&plus;2ydy%2C%5C%5C%202xdx&plus;4ydy&plus;6zdz%3D0%20%5Cend%7Bmatrix%7D%5Cright.

        联立两方程消去z

                eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%206zdz%3D12xzdx&plus;12yzdy%5C%5C%202xdx&plus;4ydy&plus;6zdz%3D0%20%5Cend%7Bmatrix%7D%5Cright.%20%3D%3E%20%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5Cfrac%7Bx%281&plus;6z%29%7D%7B2y%281&plus;3z%29%7D

       联立两方程消去y

                eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%202dz%3D4xdx&plus;4ydy%5C%5C%202xdx&plus;4ydy&plus;6zdz%3D0%20%5Cend%7Bmatrix%7D%5Cright.%20%3D%3E%20%5Cfrac%7Bdz%7D%7Bdx%7D%3D%5Cfrac%7Bx%7D%7B1&plus;3z%7D

        

        已知函数eq?u%3Du%28x%2Cy%29满足方程eq?%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x%5E2%7D-%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20y%5E2%7D&plus;k%28%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D&plus;%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%29%3D0,确定参数a,b

        利用变换eq?u%28x%2Cy%29%3Dv%28x%2Cy%29e%5E%7Bax&plus;by%7D将原方程变形,使新方程中不含一阶偏导项

                eq?%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3De%5E%7Bax&plus;by%7D%28av&plus;%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%29%2C%20%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x%5E2%7D%3De%5E%7Bax&plus;by%7D%28a%5E2v&plus;a%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D&plus;a%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20v%7D%7B%5Cpartial%20x%5E2%7D%29

                eq?%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%3De%5E%7Bax&plus;by%7D%28bv&plus;%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%29%2C%20%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20y%5E2%7D%3De%5E%7Bax&plus;by%7D%28b%5E2v&plus;b%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D&plus;b%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20v%7D%7B%5Cpartial%20y%5E2%7D%29

        可得:eq?a%3D-%5Cfrac%7Bk%7D%7B2%7D%2Cb%3D%5Cfrac%7Bk%7D%7B2%7D,原方程化为eq?%5Cfrac%7B%5Cpartial%5E2%20v%7D%7B%5Cpartial%20x%5E2%7D-%5Cfrac%7B%5Cpartial%5E2%20v%7D%7B%5Cpartial%20y%5E2%7D%3D0

        

        设A,B,C,为常数AC-B^2<0,A≠0,u(x,y)具有二阶连续偏导数

        证明:必存在非奇异线性变换eq?%5Cxi%3D%5Clambda_1x&plus;y%2C%5Ceta%20%3D%5Clambda_2x&plus;y

        将方程eq?A%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x%5E2%7D&plus;2B%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x%5Cpartial%20y%7D&plus;C%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20y%5E2%7D%3D0化为eq?%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20%5Cxi%5Cpartial%20%5Ceta%7D%3D0

                eq?%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Cxi%7D%5Cfrac%7B%5Cmathrm%7Bd%20%5Cxi%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D&plus;%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ceta%7D%5Cfrac%7B%5Cmathrm%7Bd%5Ceta%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%3D%5Clambda_1%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Cxi%7D&plus;%5Clambda_2%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ceta%7D

                eq?%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x%5E2%7D%3D%5Clambda%5E2_1%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Cxi%7D&plus;2%5Clambda_1%5Clambda_2%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20%5Cxi%5Cpartial%20%5Ceta%7D&plus;%5Clambda%5E2_2%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ceta%7D

                eq?%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Cxi%7D%5Cfrac%7B%5Cmathrm%7Bd%20%5Cxi%7D%20%7D%7B%5Cmathrm%7Bd%7D%20y%7D&plus;%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ceta%7D%5Cfrac%7B%5Cmathrm%7Bd%5Ceta%7D%20%7D%7B%5Cmathrm%7Bd%7D%20y%7D%3D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Cxi%7D&plus;%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ceta%7D

                eq?%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20y%5E2%7D%3D%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20%5Cxi%5E2%7D&plus;2%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20%5Cxi%5Cpartial%20%5Ceta%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20%5Ceta%5E2%7D

                eq?%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20x%5Cpartial%20y%7D%3D%5Clambda_1%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20%5Cxi%5E2%7D&plus;%28%5Clambda_1&plus;%5Clambda_2%29%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20%5Cxi%5Cpartial%20%5Ceta%7D&plus;%5Clambda_2%5Cfrac%7B%5Cpartial%5E2%20u%7D%7B%5Cpartial%20%5Ceta%5E2%7D

        

        设eq?u%3Du%28x%2Cy%29可微,又设eq?x%3Drcos%5Ctheta%20%2Cy%3Drsin%5Ctheta

        (1)当r≠0时,用u对r,θeq?的一阶偏导数表示eq?x%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D-y%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D

                eq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20r%7D%3D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7Dcos%5Ctheta%20&plus;%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7Dsin%5Ctheta%5C%5C%20%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ctheta%7D%3Dr%28%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7Dcos%5Ctheta%20-%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7Dsin%5Ctheta%29%20%5Cend%7Bmatrix%7D%5Cright.%3D%3E%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20r%7D-%5Cfrac%7Bsin%5Ctheta%7D%7Br%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ctheta%7D%5C%5C%20%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20r%7D&plus;%5Cfrac%7Bcos%5Ctheta%7D%7Br%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ctheta%7D%20%5Cend%7Bmatrix%7D%5Cright.

                eq?x%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D-y%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20%5Ctheta%7D

二重积分

        (一)二重积分的计算

        设eq?D%3D%5C%7B%28x%2Cy%29%5C%2C%7C%5C%2C1%3Cx%5Cleq%20e%2C1%3Cy%5Cleq%20e%5C%7D

        记eq?I_1%3D%5Ciint_%7BD%7D%5Bx%5Cln%20%28x&plus;%5Csqrt%7B1&plus;x%5E2%29%7D-%5Csqrt%7B1&plus;x%5E2%7D%5Dsin%28%5Cln%20y%29d%5Csigma

            eq?I_2%3D%5Ciint_%7BD%7D%5By%5Cln%20%28y&plus;%5Csqrt%7B1&plus;y%5E2%29%7D-%5Csqrt%7B1&plus;y%5E2%7D%5Dsin%28%5Cln%20y%29d%5Csigma 

        令eq?f%28x%29%3Dx%5Cln%20%28x&plus;%5Csqrt%7B1&plus;x%5E2%7D-%5Csqrt%7B1&plus;x%5E2%7D%29%2Cg%28y%29%3Dsin%28%5Cln%20y%29

        有eq?f%27%28x%29%3D%5Cln%20%28x&plus;%5Csqrt%7B1&plus;x%5E2%7D%29%3E0%2Cg%27%28y%29%3D%5Cfrac%7Bcos%5Cln%20y%7D%7By%7D%3E0

        eq?I_1-I_2%3D%5Ciint_D%5Bf%28x%29-f%28y%29%5Dg%28y%29d%5Csigma%3D%5Ciint_D%5Bf%28y%29-f%28x%29%5Dg%28x%29d%5Csigma

        eq?2%28I_1-I_2%29%3D%5Ciint_D%5Bf%28x%29-f%28y%29%5D%5Bg%28y%29-g%28x%29%5Dd%5Csigma%3C0

        所以eq?I_1%3CI_2    

        

        设函数f(x)为[0,1]上的1连续函数,且0≤f(x)<1,利用二重积分证明不等式

                        eq?%5Cint_%7B0%7D%5E%7B1%7D%5Cfrac%7Bf%28x%29%7D%7B1-f%28x%29%7Ddx%5Cgeq%5Cfrac%7B%5Cint_%7B0%7D%5E%7B1%7Df%28x%29dx%7D%7B1-%5Cint_%7B0%7D%5E%7B1%7Df%28x%29dx%7D

        eq?%5Cint_%7B0%7D%5E%7B1%7D%5Cfrac%7Bf%28x%29%7D%7B1-f%28x%29%7Ddx%5Cint_%7B0%7D%5E%7B1%7D%5B1-f%28x%29%5Ddx%5Cgeq%5Cint_%7B0%7D%5E%7B1%7Df%28x%29dx

        eq?%5Cint_%7B0%7D%5E%7B1%7D%5Cfrac%7Bf%28x%29%7D%7B1-f%28x%29%7Ddx%5Cint_%7B0%7D%5E%7B1%7D%5B1-f%28y%29%5Ddy%3D%5Cint_%7B0%7D%5E%7B1%7D%5Cfrac%7Bf%28y%29%7D%7B1-f%28y%29%7Ddy%5Cint_%7B0%7D%5E%7B1%7D%5B1-f%28x%29%5Ddx

        eq?%3D%5Cfrac%7B1%7D%7B2%7D%5Ciint_D%5Cfrac%7Bf%28x%29-f%28x%29f%28y%29%7D%7B1-f%28x%29%7D&plus;%5Cfrac%7Bf%28y%29-f%28y%29f%28x%29%7D%7B1-f%28y%29%7Dd%5Csigma

        eq?%3D%5Cfrac%7B1%7D%7B2%7D%5Ciint_D%5Cfrac%7B%5Bf%28x%29&plus;f%28y%29%5D%5B1&plus;f%28x%29f%28y%29%5D-4f%28x%29f%28y%29%7D%7B%5B1-f%28x%29%5D%5B1-f%28y%29%5D%7Dd%5Csigma

        eq?%5Cgeq%5Cfrac%7B1%7D%7B2%7D%5Ciint_D%5Cfrac%7B%5Bf%28x%29&plus;f%28y%29%5D%5B1&plus;f%28x%29f%28y%29%5D-%5Bf%28x%29&plus;f%28y%29%5D%5E2%7D%7B%5B1-f%28x%29%5D%5B1-f%28y%29%5D%7Dd%5Csigma

        eq?%3D%5Cfrac%7B1%7D%7B2%7D%5Ciint_D%5Cfrac%7B%5Bf%28x%29&plus;f%28y%29%5D%5B1-f%28x%29%5D%5B1-f%28y%29%5D%7D%7B%5B1-f%28x%29%5D%5B1-f%28y%29%5D%7Dd%5Csigma

        eq?%3D%5Cfrac%7B1%7D%7B2%7D%5Ciint_Df%28x%29&plus;f%28y%29d%5Csigma%3D%5Cint_%7B0%7D%5E%7B1%7Df%28x%29dx

无穷级数

(一)常数项级数

  (1)级数的概念与性质

          1)正项级数

          2)交错级数

          3)任意项级数

 (2)级数的审敛法则

          1)比值法

          2)根值法

          3)积分判别法

          设f(x)是[1,+∞)上单调减,非负的连续函数,且an=f(n),则

         eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Daneq?%5Cint_%7B1%7D%5E%7B&plus;%5Cinfty%20%7Df%28x%29dx同敛散

         4)交错级数:                                                      eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%28-1%29%5E%7B%28n-1%29%7Du_n%2Cu_n%3E0

           莱布尼茨准则:

           (1)单调递减(2)eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7Du_n%3D0

                     则    eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%28-1%29%5E%7B%28n-1%29%7Du_n收敛

        5)任意项级数

           绝对收敛与条件收敛:

            ①绝对收敛的级数一定收敛

            ②条件收敛的级数其正项(或负项)构成的级数必定发散

        设级数eq?%5Csum_%7Bn%3D2%7D%5E%7B%5Cinfty%7D%7Cu_n-u_%7Bn-1%7D%7C收敛,且正项级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dv_n收敛,则级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Du_nv%5E2_n

                eq?u_n-u_%7Bn-1%7D收敛,则eq?%5Clim_%7Bx%5Cto%20%5Cinfty%7Du_n存在,故绝对收敛


        设eq?a_n%5Cleq%20b_n%5Cleq%20c_n,则

        级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_n%2C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dc_n都收敛,则级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Db_n也收敛

                eq?0%5Cleq%20b_n-an%5Cleq%20c_n-a_n, 级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_n%2C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dc_n都收敛

                所以eq?b_n收敛


        下列命题中正确的是

        (A)若eq?u_n%3Cv_n%5CRightarrow%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Du_n%5Cleq%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dv_n   收敛才可以比大小

        (B)若eq?u_n%3Cv_n%2C%20%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dv_n收敛eq?%5CRightarroweq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Du_n收敛

        (C)若eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7D%5Cfrac%7Bu_n%7D%7Bv_n%7D%3D1eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dv_n收敛,则eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Du_n收敛

        (D)若eq?w_n%5Cleq%20u_n%5Cleq%20v_n,级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dw_n%2C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dv_n都收敛,则级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Du_n也收敛

        B,C均属于对正项级数的判定定理,不符合任意项级数


        下列命题正确的是

        (A)设eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_n收敛,则eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7Dna_n%3D0

        (B)设eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_n收敛,且当eq?n%5Cto%20%5Cinftyeq?a_n%2Cb_n是等价无穷小,则eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Db_n亦收敛

        (C)设eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_n%2C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7Cb_n%7C都收敛,则eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7Ca_nb_n%7C也收敛

        (D)设eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_n%2C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Db_n%2C都收敛,则eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nb_n也收敛

        A若a为正项级数,则有a_n<1\n,对于任意项级数不符合如调和级数收敛但极限

        eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7Dna_n不存在

        B对于正项级数成立,eq?a_n%3D%28-1%29%5E%7Bn&plus;1%7D%5Cfrac%7B%5Csqrt%7Bn&plus;1%7D%7D%7Bn%7D%2Cb_n%3D%5Cfrac%7B%28-1%29%5E%7Bn&plus;1%7D%7D%7B%5Csqrt%7Bn&plus;1%7D&plus;%28-1%29%5E%7Bn&plus;1%7D%7D%5CRightarrow%20a_n%3Db_n&plus;%5Cfrac%7B1%7D%7Bn%7D

        C当n充分大时eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7Da_n%3C1%5CRightarrow%20%7Ca_nb_n%7C%3C%7Cb_n%7C%2C%7Cb_n%7C收敛所以  eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7Ca_nb_n%7C也收敛

        Deq?a_n%3Db_n%3D%5Cfrac%7B%28-1%29%5En%7D%7B%5Csqrt%20n%7D%5CRightarrow%20a_nb_n%3D%5Cfrac%7B1%7D%7Bn%7D

 


        已知eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da%5E2_n%2C%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7Bb%5E2_n%7D收敛,λ为正常数,则级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%28-1%29%5En%5Cfrac%7B%7Ca_n%7C%7D%7B%5Csqrt%7Bb%5E2_n&plus;%5Clambda%7D%7D

                eq?%5Cfrac%7B1%7D%7Bb%5E2_n&plus;%5Clambda%7D%5Cleq%20%5Cfrac%7B1%7D%7Bb%5E2_n%7D%5CRightarrow%20a%5E2_n&plus;%5Cfrac%7B1%7D%7Bb%5E2_n&plus;%5Clambda%7D%5Cgeq%202%5Cfrac%7B%7Ca_n%7C%7D%7B%5Csqrt%7Bb%5E2_n&plus;%5Clambda%7D%7D,故绝对收敛


        eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%28-1%29%5E%7Bn-1%7D%5Cfrac%7B2n%5E2%7D%7B%282n%29%21%7D%5Cfrac%7B1%7D%7B2%5En%7D

        eq?%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B2n-1&plus;1%7D%7B%282n-1%29%21%7D%5Cfrac%7B1%7D%7B2%5E%28n&plus;1%29%7D

        eq?%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%28-1%29%5E%7Bn-1%7D%5Cfrac%7B2%5E%7B-%28n&plus;1%29%7D%7D%7B%282n-2%29%21%7D&plus;%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%28-1%29%5E%7B%28n-1%29%7D%5Cfrac%7B2%5E%7B-%28n&plus;1%29%7D%7D%7B%282n-1%29%21%7D

        eq?%3D%5Cfrac%7B1%7D%7B4%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%28-1%29%5E%7B%28n-1%29%7D%5Cfrac%7B%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%5E%7B2n%7D%7D%7B%282n%29%21%7D&plus;%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B4%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%28-1%29%5E%7Bn%7D%5Cfrac%7B%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%5E%7B2n&plus;1%7D%7D%7B%282n&plus;1%29%21%7D

        eq?%3D%5Cfrac%7B1%7D%7B4%7Dcos%5Cfrac%7B%5Csqrt2%7D%7B2%7D&plus;%5Cfrac%7B%5Csqrt2%7D%7B4%7Dsin%5Cfrac%7B%5Csqrt2%7D%7B2%7D


        设eq?f%28x%29%3D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20x&plus;1%20%26%200%5Cleq%20x%20%5Cleq%20%5Cpi%5C%5C%200%26%20-%5Cpi%20%5Cleq%20x%20%3C0%20%5Cend%7Bmatrix%7D%5Cright.%20%2CS%28x%29%3D%5Cfrac%7Ba_0%7D%7B2%7D&plus;%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%28a_ncosnx&plus;b_nsinnx%29        是f(x)的以2Π为周期的傅里叶级数,则eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%28-1%29%5Ena_n%3DS%28%5Cpi%29-%5Cfrac%7Ba_0%7D%7B2%7D%3D%5Cfrac%7B%5Cpi%7D%7B4%7D

        证明级数eq?%5Csum_%7Bn%3D2%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%28-1%29%5En%7D%7B%5Csqrt%7Bn&plus;%28-1%29%5En%7D%7D条件收敛

        因为eq?%7Cu_n%7C%3D%5Cfrac%7B1%7D%7B%5Csqrt%7Bn&plus;%28-1%29%5En%7D%7D%5Cgeq%20%5Cfrac%7B1%7D%7B%5Csqrt%7Bn&plus;1%7D%7D,由比较判别法知eq?u_n发散

        又因为        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​  ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        eq?S_%7B2n%7D%3D%5Csum_%7Bk%3D2%7D%5E%7B2n&plus;1%7D%5Cfrac%7B%28-1%29%5Ek%7D%7B%5Csqrt%7Bk&plus;%28-1%29%5Ek%7D%7D%3D%28%5Cfrac%7B1%7D%7B%5Csqrt3%7D-%5Cfrac%7B1%7D%7B%5Csqrt2%7D%29&plus;%28%5Cfrac%7B1%7D%7B%5Csqrt5%7D-%5Cfrac%7B1%7D%7B%5Csqrt4%7D%29&plus;.......%28%5Cfrac%7B1%7D%7B%5Csqrt%7B2n&plus;1%7D%7D-%5Cfrac%7B1%7D%7B%5Csqrt%7B2n%7D%7D%29单减

        再由​​​​​​​eq?S_%7B2n%7D%3E%28%5Cfrac%7B1%7D%7B%5Csqrt4%7D-%5Cfrac%7B1%7D%7B%5Csqrt2%7D%29&plus;%28%5Cfrac%7B1%7D%7B%5Csqrt6%7D-%5Cfrac%7B1%7D%7B%5Csqrt4%7D%29&plus;.......%28%5Cfrac%7B1%7D%7B%5Csqrt%7B2n&plus;2%7D%7D-%5Cfrac%7B1%7D%7B%5Csqrt%7B2n%7D%7D%29%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2n&plus;2%7D%7D-%5Cfrac%7B1%7D%7B%5Csqrt2%7D%3E-%5Cfrac%7B1%7D%7B%5Csqrt2%7D

        知eq?S_%7B2n%7D单调有下界,故收敛,记eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7DS_%7B2n%7D%3DS,知eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7Du_n%3D0

                        eq?S_%7B2n&plus;1%7D%3D%5Clim_%7Bn%5Cto%20%5Cinfty%7D%28S_%7B2n%7D&plus;u_%7B2n&plus;2%7D%29%3DS&plus;0%3DS

        所以原级数的前n项部分和数列收敛,从而级数收敛,所以原级数条件收敛


        设f(x)在[0,+∞)上连续,反常积分eq?%5Cint_%7B0%7D%5E%7B&plus;%5Cinfty%7Df%5E2%28x%29dx收敛,令eq?a_n%3D%5Cint_%7B0%7D%5E%7B1%7Df%28nx%29dx

        证明级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Ba%5E2_n%7D%7Bn%7D收敛

        令eq?nx%3Dt%2C%5CRightarrow%20dx%3D%5Cfrac%7B1%7D%7Bn%7Ddt%2Ca_n%3D%5Cfrac%7B1%7D%7Bn%7D%5Cint_%7B0%7D%5E%7Bn%7Df%28t%29dt%5CRightarrow%20a%5E2_n%3D%5Cfrac%7B1%7D%7Bn%5E2%7D%5Cint_%7B0%7D%5E%7Bn%7Df%28t%29dt%5Cint_%7B0%7D%5E%7Bn%7Df%28t%29dt

                eq?a%5E2_n%3D%5Cfrac%7B1%7D%7Bn%5E2%7D%5Cint_%7B0%7D%5E%7Bn%7Dds%5Cint_%7B0%7D%5E%7Bn%7Df%28t%29f%28s%29dt

                      eq?%5Cleq%20%5Cfrac%7B1%7D%7B2n%5E2%7D%5Cint_%7B0%7D%5E%7Bn%7Dds%5Cint_%7B0%7D%5E%7Bn%7D%5Bf%5E2%28t%29&plus;f%5E2%28s%29%5Ddt

                      eq?%3D%5Cfrac%7B1%7D%7B2n%5E2%7D%5B%5Cint_%7B0%7D%5E%7Bn%7Dds%5Cint_%7B0%7D%5E%7Bn%7Df%5E2%28t%29dt&plus;%5Cint_%7B0%7D%5E%7Bn%7Dds%5Cint_%7B0%7D%5E%7Bn%7Df%5E2%28s%29dt%5D

                      eq?%3D%5Cfrac%7B1%7D%7B2n%7D%5B%5Cint_%7B0%7D%5E%7Bn%7Df%5E2%28t%29dt&plus;%5Cint_%7B0%7D%5E%7Bn%7Df%5E2%28s%29ds%5D%3D%5Cfrac%7B1%7D%7Bn%7D%5Cint_%7B0%7D%5E%7Bn%7Df%5E2%28t%29dt

                      eq?%5Cleq%20%5Cfrac%7B1%7D%7Bn%7D%5Cint_%7B0%7D%5E%7B&plus;%5Cinfty%7Df%5E2%28t%29dt%3D%5Cfrac%7BA%7D%7Bn%7D

        由正项级数的比较判别法可知,级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Ba%5E2_n%7D%7Bn%7D收敛


        求幂级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%5B3&plus;%28-1%29%5En%5D%5En%7D%7Bn%7Dx%5En的收敛域与和函数

                eq?S%28x%29%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B4%5E%7B2n%7D%7D%7B2n%7Dx%5E%7B2n%7D&plus;%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B2%5E%7B2n-1%7D%7D%7B2n-1%7Dx%5E%7B2n-1%7D

                          eq?%3D%5Cint_%7B0%7D%5E%7Bx%7D%28%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D4%5E%7B2n%7Dt%5E%7B2n-1%7D%29dt&plus;%5Cint_%7B0%7D%5E%7Bx%7D%28%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D2%5E%7B2n-1%7Dt%5E%7B2n-2%7D%29dt

                          eq?%3D%5Cint_%7B0%7D%5E%7Bx%7D%284%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%284t%29%5E%7B2n-1%7D%29dt&plus;%5Cint_%7B0%7D%5E%7Bx%7D%282%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%282t%29%5E%7B2n%7D%29dt

                          eq?-%5Cfrac%7B1%7D%7B2%7D%5Cln%20%281-16x%5E2%29&plus;%5Cfrac%7B1%7D%7B2%7D%5Cln%20%5Cfrac%7B1&plus;2x%7D%7B1-2x%7D%2C%28-%5Cfrac%7B1%7D%7B4%7D%3Cx%3C%5Cfrac%7B1%7D%7B4%7D%29

        


        求级数eq?%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bx%5E%7B2n%7D%7D%7B%282n%29%21%7D的和函数

                eq?%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bx%5En%7D%7Bn%21%7D&plus;%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%28-x%29%5En%7D%7Bn%21%7D%5D%3D%5Cfrac%7B1%7D%7B2%7D%28e%5Ex&plus;e%5E%7B-x%7D%29

        或者eq?y%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bx%5E%7B2n%7D%7D%7B%282n%29%21%7D%2Cy%27%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bx%5E%7B2n-1%7D%7D%7B%282n-1%29%21%7D%2Cy%27%27%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bx%5E%7B2n-2%7D%7D%7B%282n-2%29%21%7D%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bx%5E%7B2n%7D%7D%7B%282n%29%21%7D

        有eq?y%27%27-y%3D0%2Cy%280%29%3D1%2Cy%27%280%29%3D0%5CRightarrow%20y%3D%5Cfrac%7B1%7D%7B2%7D%28e%5Ex&plus;e%5E%7B-x%7D%29


        设数列eq?a_n满足eq?a_1%3Da_2%3D1%2Ca_%7Bn&plus;1%7D%3Da_n&plus;a_%7Bn-1%7D%2C%28n%3D2%2C3.....%29证明在eq?%7Cx%7C%3C%5Cfrac%7B1%7D%7B2%7D

        幂级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5E%7Bn-1%7D收敛,并求其和函数与系数eq?a_n

            eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5E%7Bn-1%7D%3Da_1&plus;a_2x&plus;%5Csum_%7Bn%3D3%7D%5E%7B%5Cinfty%7D%28a_%7Bn-1%7D&plus;a_%7Bn-2%7D%29x%5E%7Bn-1%7D

                                      eq?%3Da_1&plus;a_2x&plus;%28-a_1x&plus;x%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5E%7Bn-1%7D%29&plus;x%5E2%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5E%7Bn-1%7D   eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5E%7Bn-1%7D%3D%5Cfrac%7B1%7D%7B1-x-x%5E2%7D

​​​​​​​ 将eq?%5Cfrac%7B1%7D%7B1-x-x%5E2%7D展开为x的幂级数

    eq?%5Cfrac%7B1%7D%7B1-x-x%5E2%7D%3D%5Cfrac%7B1%7D%7B%28x&plus;%5Cfrac%7B1&plus;%5Csqrt5%7D%7B2%7D%29%28x&plus;%5Cfrac%7B1-%5Csqrt5%7D%7B2%7D%29%7D

                              eq?%3D%5Cfrac%7B%5Csqrt5%7D%7B5%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%28-1%29%5E%7Bn-1%7D%28%5Cfrac%7B2%7D%7B1&plus;%5Csqrt5%7D%29%5En&plus;%28%5Cfrac%7B2%7D%7B-1&plus;%5Csqrt5%7D%29%5En%5Dx%5E%7Bn-1%7D

                所以eq?a_n%3D%5Cfrac%7B%5Csqrt5%7D%7B5%7D%5B%28-1%29%5E%7Bn-1%7D%28%5Cfrac%7B2%7D%7B1&plus;%5Csqrt5%7D%29%5En&plus;%28%5Cfrac%7B2%7D%7B-1&plus;%5Csqrt5%7D%29%5En%5D


        已知幂级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%281&plus;%5Cfrac%7B1%7D%7B2%7D&plus;......&plus;%5Cfrac%7B1%7D%7Bn%7D%29x%5En,则和函数S(x)为

                令eq?a_n%3D%281&plus;%5Cfrac%7B1%7D%7B2%7D&plus;......&plus;%5Cfrac%7B1%7D%7Bn%7D%29,则eq?S%28x%29%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5En

                eq?S%28x%29%3D%5Csum_%7Bn%3D2%7D%5E%7B%5Cinfty%7Da_%7Bn-1%7Dx%5En&plus;%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bx%5En%7D%7Bn%7D

                          eq?%3Dx%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5En-%5Cln%20%281-x%29

                eq?%281-x%29S%28x%29%3D-%5Cln%20%281-x%29%5CRightarrow%20S%28x%29%3D%5Cfrac%7B%5Cln%20%281-x%29%7D%7Bx-1%7D


        

(二)幂级数

 (1)收敛半径 收敛区间 收敛域

     定理1:阿贝尔定理

           若eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5En%2Cx%3Dx_0处收敛则当eq?x%3C%7Cx_0%7C时,eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5En绝对收敛

          若eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5En%2Cx%3Dx_0处发散则当eq?x%3E%7Cx_0%7C时,eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5En发散

         若幂级数eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_nx%5En%2Cx%3Dx_0处条件收敛,则该点为幂级数收敛区间端点

      eq?%5Clim_%7Bx%5Cto%20%5Cinfty%7D%7C%5Cfrac%7Ba_%7Bn&plus;1%7D%7D%7Ba_n%7D%7C%3D%5Crho%2CR%3D%5Cfrac%7B1%7D%7B%5Crho%7D

      eq?%5Clim_%7Bx%5Cto%20%5Cinfty%7D%5Csqrt%7B%7Ca_n%7C%7D%3D%5Crho%2CR%3D%5Cfrac%7B1%7D%7B%5Crho%7D

   (2)幂级数性质

           有理运算性质:

             设eq?%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_nx%5En的收敛半径为eq?R_1eq?%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Db_nx%5En的收敛半径为eq?R_2

      (1)eq?%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_nx%5En%5Cpm%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Db_nx%5Eneq?%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20R%5Cgeq%20min%28R_1%2CR_2%29%20%26R_1%3D%20R_2%20%5C%5C%20R%3Dmin%28R_1%2CR_2%29%20%26R_1%5Cneq%20R_2%20%5Cend%7Bmatrix%7D%5Cright.

      (2)eq?%28%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_nx%5En%29*%28%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_nx%5En%29%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Dc_nx%5En

eq?c_n%3Da_0b_n&plus;a_1b_%7Bn-1%7D&plus;......&plus;a_%7Bn-1%7Db1&plus;a_nb_0

     (3)eq?%5Cfrac%7B%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_nx%5En%7D%7B%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Db_nx%5En%7D%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Dc_nx%5En

        分析性质:

         设幂级数eq?%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_nx%5En的收敛半径为eq?R,且和函数为eq?S%28x%29

    (1)连续性:和函数S(x)在其收敛域上连续

    (2)可导性:和函数S(x)在收敛区间上可导,且可逐项求导,半径不变​​​​​​​

    (3)可积性:和函数S(x)在收敛域上可积,且可逐项求积,半径不变

                                        

(3)函数展开为幂级数

     定理1:如果函数f(x)能够在eq?%28x_0-R%2Cx_0&plus;R%29上展开为eq?x-x_0的幂级数eq?%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_n%28x-x_0%29%5En,则展开式是唯一的

      eq?f%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bf%5E%7B%28n%29%7D%28x_0%29%7D%7Bn%21%7D%28x-x_0%29%5En

    定理2:设f(x)在eq?x_0处任意阶可导,则                             eq?%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bf%5E%7B%28n%29%7D%28x_0%29%7D%7Bn%21%7D%28x-x_0%29%5En

                 在eq?%28x_0-R%2Cx_0&plus;R%29收敛于f(x) <=>eq?%5Clim_%7Bn%5Cto%20%5Cinfty%7DR_n%28x%29%3D0

                其中eq?R_n%28x%29%3D%5Cfrac%7Bf%5E%7B%28n&plus;1%29%7D%28%5Cxi%29%7D%7B%28n&plus;1%29%21%7D%28x-x_0%29%5E%7Bn&plus;1%7D为f(x)在eq?x_0处的泰勒余项

                                                eq?f%28x%29%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bf%5E%7B%28k%29%7D%28x_0%29%7D%7Bk%21%7D%28x-x_0%29%5Ek&plus;R_n%28x%29

            1)直接展开法:

               (1)逐项求导eq?f%28x%29

               (2)判断eq?R_n%28x%29是否存在

             2)间接展开法

(三)傅里叶级数

       设以eq?2%5Cpi为周期的函数eq?f%28x%29eq?%5B-%5Cpi%2C%5Cpi%5D上连续或只有有限个间断点,且至多只有有限个极值点,则eq?f%28x%29的傅里叶级数                                           eq?%5Cfrac%7Ba_0%7D%7B2%7D&plus;%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Da_ncosnx&plus;b_nsinnx

    在eq?%5B-%5Cpi%2C%5Cpi%5D上处处收敛,记其和函数eq?S%28x%29                              eq?S%28x%29%3D%5Cfrac%7Ba_0%7D%7B2%7D&plus;%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_ncosnx&plus;b_nsinnx      eq?S%28x%29%3D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20f%28x%29%2C%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2Cx%20%5C%2Cis%5C%2Ccontinous%5C%2Cpoint%5C%5C%5Cfrac%7Bf%28x-0%29&plus;f%28x&plus;0%29%7D%7B2%7D%2C%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%20x%20%5C%2Cis%5C%2Cdiscontinuities%20%5C%5C%20%5Cfrac%7Bf%28-%5Cpi&plus;0%29&plus;f%28%5Cpi-0%29%7D%7B2%7D%20%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%20%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%2C%5C%2C%5C%2C%5C%2C%5C%2C%5C%2C%20x%20%3D%5Cpm%20%5Cpi%5Cend%7Bmatrix%7D%5Cright.​​​​​​​                                   eq?a_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7Df%28x%29cosnxdx

                                        eq?b_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7Df%28x%29sinnxdx         

设函数f(x)连续且满足f(x+Π)+f(x)=0,则f(x)以2Π为周期的傅里叶系数

                eq?a_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7Df%28x%29cosnxdx%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5B%5Cint_%7B-%5Cpi%7D%5E%7B0%7Df%28x%29cosnxdx&plus;%5Cint_%7B0%7D%5E%7B%5Cpi%7Df%28x%29cosnxdx%5D

                      eq?%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%7B0%7Df%28x%29cosnx&plus;%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%7B0%7Df%28t&plus;%5Cpi%29cosn%28t&plus;%5Cpi%29dt

                      eq?%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%7B0%7D%5Bf%28x%29-%28-1%29%5Enf%28x%29%5Dcosnxdx

        同理eq?b_n%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%7B0%7D%5Bf%28x%29-%28-1%29%5Enf%28x%29%5Dsinnxdx

        可知eq?a_%7B2n%7D%3Db_%7B2n%7D%3D0


        设f(x)为任意阶可导函数,且eq?f%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_%7B2n-1%7Dx%5E%7B2n-1%7D,将函数        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        eq?f%28x%29%3D%5Cint_%7B0%7D%5E%7Bx%7De%5E%7Bx%5E2-t%5E2%7Ddt展开为x的幂级数

                eq?f%28x%29%3De%5E%7Bx%5E2%7D%5Cint_%7B0%7D%5E%7Bx%7De%5E%7B-t%5E2%7Ddt%2Cf%27%28x%29%3D2xe%5E%7Bx%5E2%7D%5Cint_%7B0%7D%5E%7Bx%7De%5E%7B-t%5E2%7Ddt&plus;1%3D2xf%28x%29&plus;1

        根据eq?f%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7Da_%7B2n-1%7Dx%5E%7B2n-1%7D可知

                eq?f%27%28x%29%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%282n-1%29a_%7B2n-1%7Dx%5E%7B2n-2%7D%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D2a_%7B2n-1%7Dx%5E%7B2n%7D&plus;1%3D2xf%28x%29&plus;1

        即    eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%282n&plus;1%29a_%7B2n&plus;1%7Dx%5E%7B2n%7D&plus;a_1%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D2a_%7B2n-1%7Dx%5E%7B2n%7D&plus;1

        因eq?a_1%3D1%5CRightarrow%20%282n&plus;1%29a_%7B2n&plus;1%7D%3D2a_%7B2n-1%7D

                eq?f%28x%29%3Dx&plus;%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B2%5En%7D%7B%282n&plus;1%29%21%21%7Dx%5E%7B2n&plus;1%7D%2Cx%5Cin%28-%5Cinfty%2C&plus;%5Cinfty%29


        设x>2,证明eq?%5Cln%20%5Cfrac%7Bx&plus;2%7D%7Bx-2%7D%3D%5Cln%20%28%5Cfrac%7Bx&plus;1%7D%7Bx-1%7D%29%5E2&plus;2%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7B2n-1%7D%28%5Cfrac%7B2%7D%7Bx%5E3-3x%7D%29%5E%7B2n-1%7D

        令eq?S%28u%29%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bu%5E%7B2n-1%7D%7D%7B2n-1%7D%3DS%280%29&plus;%5Cint_%7B0%7D%5E%7Bu%7DS%27%28t%29dt

                      eq?%3D%5Cint_%7B0%7D%5E%7Bu%7D%28%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bt%5E%7B2n-1%7D%7D%7B2n-1%7D%29%27dt%3D%5Cint_%7B0%7D%5E%7Bu%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7Dt%5E%7B2n-2%7Ddt%3D%5Cint_%7B0%7D%5E%7Bu%7D%5Cfrac%7B1%7D%7B1-t%5E2%7Ddt%3D%5Cfrac%7B1%7D%7B2%7D%5Cln%20%5Cfrac%7B1&plus;u%7D%7B1-u%7D

        代入eq?u%3D%5Cfrac%7B2%7D%7Bx%5E3-3x%7D,则eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7B2n-1%7D%28%5Cfrac%7B1%7D%7Bx%5E3-3x%7D%29%5E%7B2n-1%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cln%20%5Cfrac%7B%28x&plus;2%29%28x-1%29%5E2%7D%7B%28x&plus;1%29%5E2%28x-2%29%7D

        即                eq?%5Cln%20%5Cfrac%7Bx&plus;2%7D%7Bx-2%7D%3D%5Cln%20%28%5Cfrac%7Bx&plus;1%7D%7Bx-1%7D%29%5E2&plus;2%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B1%7D%7B2n-1%7D%28%5Cfrac%7B2%7D%7Bx%5E3-3x%7D%29%5E%7B2n-1%7D


        证明eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bcosnx%7D%7Bn%5E2%7D%3D%5Cfrac%7B1%7D%7B12%7D%283x%5E2-6%5Cpi%20x&plus;2%5Cpi%5E2%29%2C%280%5Cleq%20x%5Cleq%20%5Cpi%29,并求eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%28-1%29%5E%7Bn-1%7D%7D%7B%282n-1%29%5E3%7D

        eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bcosnx%7D%7Bn%5E2%7D-%5Cfrac%7B%5Cpi%5E2%7D%7B6%7D%3D%5Cfrac%7B1%7D%7B12%7D%283x%5E2-6%5Cpi%20x%29,令eq?f%28x%29%3D%5Cfrac%7B1%7D%7B12%7D%283x%5E2-6%5Cpi%20x%29%2C%280%5Cleq%20x%5Cleq%20%5Cpi%29

        对f(x)偶延拓

                eq?a_0%3D%5Cfrac%7B2%7D%7B%5Cpi%7D%5Cint_%7B0%7D%5E%7B%5Cpi%7D%5Cfrac%7B1%7D%7B12%7D%283x%5E2-6%5Cpi%20x%29dx%3D-%5Cfrac%7B%5Cpi%5E2%7D%7B3%7D

                eq?a_n%3D%5Cfrac%7B2%7D%7B%5Cpi%7D%5Cint_%7B0%7D%5E%7B%5Cpi%7D%5Cfrac%7B1%7D%7B12%7D%283x%5E2-6%5Cpi%20x%29cosnxdx%3D%5Cfrac%7B1%7D%7Bn%5E2%7D

        eq?f%28x%29%5Csim%20S%28x%29%3D-%5Cfrac%7B%5Cpi%5E2%7D%7B6%7D&plus;%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bcosnx%7D%7Bn%5E2%7D得证

        

        eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bcosnx%7D%7Bn%5E2%7D%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5B%5Cfrac%7Bsinnx%7D%7Bn%5E3%7D%5D%27

        eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bsinnx%7D%7Bn%5E3%7D%3D%5Cint_%7B0%7D%5E%7Bx%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bcosnx%7D%7Bn%5E2%7D%20%3D%5Cfrac%7B1%7D%7B12%7D%5Cint_%7B0%7D%5E%7Bx%7D3t%5E2-6%5Cpi%20t&plus;2%5Cpi%5E2dt

        令eq?x%3D%5Cfrac%7B%5Cpi%7D%7B2%7D,x为奇eq?%5Cfrac%7Bsinnx%7D%7Bn%5E3%7D%3D%28-1%29%5E%7Bn-1%7D,x为偶则为0

        故eq?%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7Bsinnx%7D%7Bn%5E3%7D%3D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%5Cfrac%7B%28-1%29%5E%7Bn-1%7D%7D%7B%282n-1%29%5E3%7D

                                 eq?%3D%5Cfrac%7B1%7D%7B12%7D%5Cint_%7B0%7D%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D3t%5E2-6%5Cpi%20t&plus;2%20%5Cpi%5E2dt%3D%5Cfrac%7B%5Cpi%5E3%7D%7B32%7D

                

 

 

多元函数微分学

(一)向量 空间直线 空间曲线

(二)方向导数

     设三元函数eq?u%28x%2Cy%2Cz%29在点eq?P_0%28x_0%2Cy_0%2Cz_0%29的某空间邻域有定义,eq?l为从eq?P_0出发的一 条射线        ​​​​​​​        eq?%5Clim_%7Bt%5Cto%200%5E&plus;%7D%5Cfrac%7Bu%28P%29-u%28P_0%29%7D%7Bt%7D%3D%5Cfrac%7Bu%28x_0&plus;t%5C%2C%20cos%5Calpha%20&plus;y_0&plus;t%5C%2C%20cos%5Cbeta%20&plus;z_0&plus;z%5C%2C%20cos%5Cgamma%20%29-u%28x_0%2Cy_0%2Cz_0%29%7D%7Bt%7D

                                eq?t%3D%5Csqrt%7B%5CDelta%20%5E2x&plus;%5CDelta%20%5E2y&plus;%5CDelta%20%5E2z%7D        t>0,表示P与P0间距离

     存在,则称此极限为函数eq?u%28x%2Cy%2Cz%29在点eq?P_0处沿eq?l的方向方向导数,记作eq?%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%7C_%7BP_0%7D

      如果函数在该点处可微,则函数在该点处沿任一方向的方向导数都存在

                ​​​​​​​        ​​​​​​​        eq?%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20l%7D%7C_%7BP_0%7D%3Du%27_x%28P_0%29cos%5Calpha%20&plus;u%27_y%28P_0%29cos%5Cbeta%20&plus;u%27_z%28P_0%29cos%5Cgamma

                        eq?cos%5Calpha%20%2Ccos%5Cbeta%20%2Ccos%5Cgamma为方向eq?l的方向余弦

      如果函数在某点处有一阶偏导存在,则函数在该点处  梯度为eq?grad%5C%2C%20u%7C_%7BP_0%7D%3D%28u%27_x%28P_0%29%2Cu%27_y%28P_0%29%2Cu%27_z%28P_0%29%29

      二元函数在一点处可微是其方向导数存在的充分条件

      二元函数在一点连续既不是其方向导数存在的充分条件,也不是其必要条件

三重积分

   积分方法

     1)直角坐标系

        (1)先一后二        (2)先二后一

     2)柱面坐标系             eq?%5Ciiint_%7B%5COmega%20%7D%5E%7B%7Df%28x%2Cy%2Cz%29dxdydz%3D%5Ciiint_%7B%5COmega%20%7D%5E%7B%7Df%28rcos%5Ctheta%20%2Crsin%5Ctheta%20%2Cz%29rdrd%5Ctheta%20dz

     3)球面坐标系                                ​​​​​​​                       ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​   eq?%5Ciiint_%7B%5COmega%20%7Df%28x%2Cy%2Cz%29dxdydz%3D%5Ciiint_%7B%5COmega%20%7Df%28rsin%5Cphi%20cos%5Ctheta%2Crsin%5Cphi%20sin%5Ctheta%2Crcos%5Cphi%20%29r%5E2sin%5Cphi%20d%5Ctheta%20d%5Cphi%20dr

    4)对称性,形心公式的逆用

 第一型曲线积分

   1)投影到x轴或y轴

       公式:   eq?%5Cint_%5CGamma%20f%28x%2Cy%29dseq?%5Cint_%5CGamma%20f%28x%2Cy%2Cz%29ds

       平面:eq?ds%3D%5Csqrt%7B1&plus;y%27%5E2%28x%29%7Ddx%3D%5Csqrt%7Bx%27%5E2%28t%29&plus;y%27%5E2%28t%29%7Ddt%3D%5Csqrt%7Br%5E2%28%5Ctheta%29&plus;r%27%5E2%28%5Ctheta%29%7Dd%5Ctheta

       空间:eq?ds%3D%5Csqrt%7Bx%27%5E2%28t%29&plus;y%27%5E2%28t%29&plus;z%27%5E2%28t%29%7Ddt

      2)对称,形心

        第二型曲线积分

        1)eq?%5Coint_LP%28x%2Cy%29dx&plus;Q%28x%2Cy%29dy%3D%5Ciint_D%28%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20x%7D-%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20y%7D%29d%5Csigma

       格林公式转为面积分(封闭曲线L围成的平面),以逆时针内侧为正

      2)化为一元函数定积分

      3)斯托克斯公式

                        eq?%5Coint%20_LPdx&plus;Qdy&plus;Rdz%3D%5Ciint_%5CSigma%20%5Cbegin%7Bvmatrix%7D%20cos%5C%2C%5Calpha%20%26cos%5C%2C%5Cbeta%20%26cos%5C%2C%5Cgamma%20%5C%5C%20%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20x%7D%26%20%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20y%7D%20%26%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20z%7D%20%5C%5C%20P%20%26%20Q%20%26R%20%5Cend%7Bvmatrix%7DdS

       本质投影到三个坐标平面

    另一种形式:eq?%5Coint%20_LPdx&plus;Qdy&plus;Rdz%3D%5Ciint_%5CSigma%20%5Cbegin%7Bvmatrix%7D%20dydz%26dxdz%20%26dxdy%20%5C%5C%20%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20x%7D%26%20%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20y%7D%20%26%5Cfrac%7B%5Cpartial%20%7D%7B%5Cpartial%20z%7D%20%5C%5C%20P%20%26%20Q%20%26R%20%5Cend%7Bvmatrix%7DdS

  第一型曲面积分

   1)投影到坐标平面(xoy,yoz,xoz)投影点不能重合

  公式:eq?%5Ciint_%5CSigma%20f%28x%2Cy%2Cz%29dS%3D%5Ciint_%5CSigma%20f%28x%2Cy%2Cz%28x%2Cy%29%29%5Csqrt%7Bq&plus;z%27%5E2_x&plus;z%27%5E2_y%7Ddxdy

  第二型曲面积分

     1)投影到三个坐标平面

     2)高斯公式

       公式:eq?%5Coint%5Coint_%5CSigma%20Pdydz&plus;Qdzdx&plus;Rdxdy%3D%5Ciiint_%5COmega%20%28%5Cfrac%7B%5Cpartial%20P%7D%7B%5Cpartial%20x%7D&plus;%5Cfrac%7B%5Cpartial%20Q%7D%7B%5Cpartial%20y%7D&plus;%5Cfrac%7B%5Cpartial%20R%7D%7B%5Cpartial%20z%7D%29dv

         eq?%5CSigmaeq?%5COmega边界曲面外侧

        设函数f(x,y)在区域D={(x,y) | x^2+y^2≤1}上二阶偏导数连续,且满足        ​​​​​​​        ​​​​​​​        ​​​​​​​        eq?f%27%27_%7Bxx%7D&plus;f%27%27_%7Byy%7De%5E%7Bx%5E2&plus;y%5E2%7D%3D1,则eq?%5Ciint_D%28xf%27_x&plus;yf%27_y%29d%5Csigma%3D

        在极坐标系下eq?%5Ciint_D%28xf%27_x&plus;yf%27_y%29d%5Csigma%3D%5Cint_%7B0%7D%5E%7B1%7Drdr%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%28f%27_xcos%5Ctheta&plus;f%27_ysin%5Ctheta%29d%5Ctheta

        反向使用格林公式得eq?%3D%5Coint_Lf%27_xdy-f%27_ydx

        再使用格林公式eq?%5Ciint_D%28f%27%27_%7Bxx%7D&plus;f%27%27_%7Byy%7D%29d%5Csigma

                                 eq?%3D%5Cint_%7B0%7D%5E%7B1%7D%5B%5Ciint_D%28f%27%27_%7Bxx%7D&plus;f%27%27_%7Byy%7D%29d%5Csigma%5Drdr

                                 eq?%3D%5Cint_%7B0%7D%5E%7B1%7D%5B%5Ciint_De%5E%7B-%28x%5E2&plus;y%5E2%29%7Dd%5Csigma%5Drdr

                                 eq?%3D%5Cint_%7B0%7D%5E%7B1%7D%28%5Cint_%7B0%7D%5E%7B2%5Cpi%7Dd%5Ctheta%5Cint_%7B0%7D%5E%7Br%7De%5E%7B-%5Crho%5E2%7D%5Crho%20d%5Crho%29rdr%3D%5Cfrac%7B%5Cpi%7D%7B2e%7D


        设函数f(x,y,z)在区域eq?%5COmega%20%3D%5C%7B%28x%2Cy%2Cz%29%5C%2C%7C%5C%2Cx%5E2&plus;y%5E2&plus;z%5E2%5Cleq1%5C%7D上具有连续二阶偏导数

        且满足        eq?%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20x%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20y%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20z%5E2%7D%3D%5Csqrt%7Bx%5E2&plus;y%5E2&plus;z%5E2%7D

        计算eq?I%3D%5Ciiint_%5COmega%20%28x%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D&plus;y%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D&plus;z%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D%29

                利用转换投影法设球面eq?%5CSigma%20%3A%5C%2Cx%5E2&plus;y%5E2&plus;z%5E2%3D1外侧方向余弦eq?%28cos%5Calpha%20%2Ccos%5Cbeta%20%2Ccos%5Cgamma%20%29

                有        eq?%5Cfrac%7Bdydz%7D%7Bcos%5Calpha%20%7D%3D%5Cfrac%7Bdzdx%7D%7Bcos%5Cbeta%20%7D%3D%5Cfrac%7Bdxdy%7D%7Bcos%5Cgamma%20%7D%3DdS

                eq?I%5E%5Csim%20%3D%5Coint%20%5Coint_%5CSigma%20%28%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7Dcos%5Calpha%20&plus;%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7Dcos%5Cbeta%20&plus;%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7Dcos%5Cgamma%20%29dS

                      eq?%3D%5Coint%20%5Coint_%5CSigma%20%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7Ddydz%20&plus;%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7Ddzdx%20&plus;%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7Ddxdy                                    ①

                      eq?%3D%5Coint%20%5Coint_%5CSigma%20%28x%5E2&plus;y%5E2&plus;z%5E2%29%28%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7Ddydz%20&plus;%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7Ddzdx%20&plus;%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7Ddxdy%29       ②

                分别对①②使用高斯公式有

                eq?%5Ciiint_%5COmega%20%28%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20x%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20y%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20z%5E2%7D%29dv                 ①

​​​​​​​                eq?2%5Ciiint_%5COmega%20%28x%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D&plus;y%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D&plus;z%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D%29&plus;%28x%5E2&plus;y%5E2&plus;z%5E2%29%5Ciiint_%5COmega%20%28%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20x%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20y%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20z%5E2%7D%29dv

                eq?I%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Ciiint_%5COmega%20%28%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20x%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20y%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20z%5E2%7D%29dv-%20%28x%5E2&plus;y%5E2&plus;z%5E2%29%5Ciiint_%5COmega%20%28%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20x%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20y%5E2%7D&plus;%5Cfrac%7B%5Cpartial%5E2%20f%7D%7B%5Cpartial%20z%5E2%7D%29dv%5D

                    eq?%3D%5Cfrac%7B1%7D%7B2%7D%5Ciiint_%5COmega%20%28x%5E2&plus;y%5E2&plus;z%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D-%28x%5E2&plus;y%5E2&plus;z%5E2%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%7Ddv%3D%5Cfrac%7B%5Cpi%7D%7B6%7D

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值