一 函数
(一)函数的概念常见函数
定义:对于每个数 x∈D,变量y按照一定法则总有一个确定的y于它对应,则称x是y的函数,记y=f(x)
定义域:D为定义域
值域:{y|y=f(x),x∈D}
函数有连个基本要素:定义域,对应法则
2.复合函数
设y=f(u),定义域Df,u=g(x),定义域Dg,值域Rg
Df ∩ Rg ≠ ф
称y=f[g(x)]为函数f(u)与u=g(x)的复合函数
3.反函数
设函数y=f(x)的定义域为D,值域Rg,对任意y∈Ry,有唯一确定的x∈D,使得y=f(x),计x=
4.初等函数
幂,指数,对数,三角,反三角函数统称基本初等函数
由常数和基本初等经过有限次的加,减,乘,除和复合得到的函数
(二)函数的性态
1.单调性
定义
单调增:x1<x2 => f(x1)<f(x2)
单调不减:x1<x2 => f(x1)≤f(x2)
设f(x),x∈[a,b],f(a)=0
单增 => f(x)>0 ,x∈(a,b]
不减 => f(x)≥0, x∈(a,b]
判定
(1)根据定义
(2)导数
1. f'(x)>0,单增
2. f'(x)≥0,单调不减
2.奇偶性
定义
(1)奇函数关于原点对称,且在x=0处,f(x)=0
(2)偶函数关于轴对称
判定
(1)通过定义
(2)设f(x)可导
1. f(x)奇函数 => f’(x) 偶函数
f’(x) 偶函数 推不出 f(x) 为奇函数
例如 : 当C=0时,f(x)才为奇函数
2. f(x)偶函数 => f’(x) 奇函数
(3)连续的奇函数的原函数都是偶函数
连续的偶函数的原函数之一是奇函数
设f(x)连续
(1)若f(x)是奇函数,则是偶函数(2)若f(x)是偶函数,则
是奇函数 对于
,则只有(1)成立,(2)不成立
=
+
常数C + 积分·
3.周期性
定义:f(x+T)=f(x)
(1)若f(x)以T为周期,则f(ax+b)以为周期
判定:
(1)定义
(2)周期函数的导函数为周期函数
周期函数的原函数不一定是周期函数
设 f(x) 连续函数以T为周期
是以T为周期的周期函数<=>
![]()
周期函数的原函数是周期函数的充要条件是在一个周期上的积分为0
例题 已知f(x)=e^sinx+e^(-sinx)f'''(2Π)=
f(x)为偶函数且以2Π为周期 => f'''(2Π)=f'''(0);
将f(x)在0处泰勒展开
根据泰勒公式可知函数为:
(1)偶函数:奇数次导数皆为0
(2)奇函数:偶数次导数皆为0,且f(0)=0;
该函数为偶函数,f'''(x)为奇数次导数,故为0
4.有界性
定义
若存在:则称f(x)在I上有界
判定
(1)定义
(2)f(x)在[a,b]上连续 => f(x)在[a,b]上有界
若两端为开区间,则无法推断其在开区间有界 例如:1/x 在(0,1)上连续但无界
(3)f(x)在(a,b)上连续,且存在 => f(x)在(a,b)上有界
(4)f'(x)在有限区间I上有界 => f(x)在I上有界
设区间I上最小值m,最大值M,区间长度L
例题1
(A)若f'(x)在(0,1)内连续,则f(x)在(0,1)内有界 f'(x)=1/x^2
(B)若f(x)在(0,1)内连续,则f(x)在(0,1)内有界 f(x)=1/x
(C)若f'(x)在(0,1)内有界,则f(x)在(0,1)内有界
(D)若f(x)在(0,1)内有界,则f'(x)在(0,1)内有界
f(x)=x^a f'(x)=x^(a-1) 0<a<1
例题:设f(x)连续,且f'(0)>0,则存在δ>0,使得
(A)若f'(x)在(0,δ)内单调增加 (B)若f'(x)在(-δ,0)内单调减少 (C)对任意的x∈(0,δ)有f(x)>f(0) (D)对任意的x∈(-δ,0)有f(x)>f(0)
因此若
则存在δ>0
当
当
f'(x0)>0 不能推出 f(x)在x0某邻域内单增 对于 f(x)=x+2*x^2*sin(1/x),x≠0,x=0,时f(x)=0
x≠0时 f'(x)=1+4*xsin(1/x)-2*cos(1/x)
只要x=1/2k*Π,f'(x)= -1<0
例题:设函数f(x)在x=x0处有二阶导数,则
(A)当f(x)在x0的某邻域内单调增加时,f'(x0)>0
可能存在等于0的点 例如:f(x)=x^3
(B)当f'(x0)>0 ,则f(x)在x0的某邻域内单调增加
根据题中二阶导存在知,f'(x)连续,根据函数的保号性可知存在邻域,在该邻域内f'(x)>0
(C)当f(x)在x0的某邻域内是凹函数时,f''(x0)>0
可能存在等于0的点 例如:f(x)=x^4
(D)当f''(x0)>0时,f(x)在x0的某邻域内是凹函数
一点处的导数值不能决定函数形状
二 极限
(一)极限的概念
1.数列极限
,当n>N,
2.函数极限
lim f(x)= A:
ε>0,
δ(ε)>0,当0<|x- x0|<δ时,If(x)-A|<ε.
1)局部有界性
若存在,则f(x) 在点xo某去心邻域内有界; 若f(X)存在,则f(X)在点xo某去心邻域内有界;
2)保号性,设lim f(x)=A
(1)若A>0,则,当x∈U
时,f(x)> 0;
(2)如果当x∈U时,f(x)≥0,那么A≥0.
3)保序性:
设 则
(1)若A>B→,当x∈U
当时,f(x)> g(x).
(2)若,当x∈U
时f(x)≥g(x),A≥B
(二)求极限
若f(x)在x=0的某邻域内连续,且 x→0时f(x)是x的‘m阶无穷小,φ(x)是x的n阶无穷小
则当x→0时,F(x)=是 x的n(m+ 1)阶无穷小
(一)连续的概念
(二)间断点及其类型
(三)连续函数的性质
1)连续函数的和、差、积、商(分母不为零)及复合仍为连续函数;
2)初等函数在其定义区间内处处连续
3)推论:若f(x)在[a,b]上连续,则f(x)在[a,b]上可取到介于它在[a,b] 上最小值 与最大值之间的-一切值.
4)零点定理若f(x)在[a,b]上连续,且f(a). f(b) <0,则必ξ∈(a,b), 使f(ξ)=0.
定理
[例]设f(x) 在[0,1] 连续,f(0)= f(1),)求证:
ξ∈[0,1], 使f(ξ+1/4)=f(ξ)
证明:令F(x)=f(x+1/4)-f(x),x∈[0,3/4]
F(0)=f(1/4)-f(0)
F(1/4)=f(1/2)-f(1/4)
F(1/2)=f(3/4)-f(1/2)
F(3/4)=f(1)-f(3/4)
F(0)+F(1/4)+F(1/2)+F(3/4)=f(1)-f(0)=0
若F(x)在[0,3/4],上无零点,则根据F(x)在定义域上连续F(x)恒大于0或恒小于0,则不符合等式 故,存在
1.记
的反函数为
,求极限
x趋于无穷,那么
可近似看作
2.
令
所以
因为:
所以:
原极限
3.
原式
令
![]()
所以原极限
拉普拉斯
f(x)以T为周期,则
3.
![]()
![]()
导数
(一)导数的概念
例题:设
在
内有定义,且
,又对任意的
有
,求f(x)
令x=y=0 => f(0)=0
![]()
(二)微分的概念
若
线性主部+变化量的△x的高阶无穷小
则称f(x)在x0处可微,记A△x为微分,dy=A△x dx
函数在某点可微的充分必要条件为f(x)在该点处可导
驻点:
1)一阶导函数图像
(1)函数值为0(2)函数值正负性改变(极值点)
拐点
1)一阶导函数图像
(1)曲线单调性改变(2)曲线图像极值点
例题:函数f(x)有连续导数,且满足
,f(x)必存在
令
![]()
,
,极大值点
设函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=a,f(b)=b
(1)至少存在一点
,使得
设F(x)=f(x)+x,
根据连续函数的介值定理知道,必存在一点
使得
(2)至少存在两个不同点
,使得
以
为分界
由
得
(3)至少存在一点
,使得
构造函数
,有
求导:
根据罗尔定理可知,存在一点
使得
得证
设函数f(x)在[a,b]上二阶可导,且
在[a,b]上恒大于或小于零,f(a)=f(b)=0
证明:存在两个不同的点
,使得
令
,
因为
根据罗尔定理可知:存在一点
,使得
以
为分界点,将区间分为
,有
再次使用罗尔定理可知存在两点
,使得
设f(x)在[a,b]上二阶可导,且
,证明存在
使得
将函数a,b处展开
![]()
令
,两式相减得到
所以
若
那么
设f(x)在区间[0,+∞),内具有二阶导数,且|f(x)|≤1,0<|f''(x)|≤2(0≤x<+∞)
证明:
![]()
设一质点在单位时间内由A从静止作直线运动到B停止,A,B两点间距离为1
证明:该质点在(0,1)内总有一时刻得加速度的绝对值不小于4
设y(t)是关于距离y对时间t的函数,
![]()
令t=1/2,分贝在t=0,t=1处展开
![]()
所以有:
![]()
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又
证明:在(-2,2)上至少存在一点
,使得
,
由|f(x)|≤1,知
令
因为F(x)在
上连续,且F(0)=4,设F(x)在
上的最大值在
处取到,则
且F(x)在
上可导
由费马定理有
即
因为|f(x)|≤1,且
,所以
,于是就有
(三)导数与微分的几何意义
导数:切线的斜率
微分:切线上的增量
函数在某点处可导的充要条件:
即 (1)存在
(2)变化量既可以趋近0+也可以趋近0-
简言之,左右导数存在且相等
对于f(x)=φ(x)*|g(x)|形式,φ(x)可导,求f(x)的不可导点
只要在g(x)=0的点处φ(x)≠0,即为不可导点
设f(x)连续
(1) 若f(x0)≠0, 则|f(x0)|在x0处可导<=>f(x)在x0处可导
(2)若f(x0)=0,则f(x0)|在x0处可导<=>f'(x0)=0
设
,则
是(A)
(A)可导的奇函数
(B)连续,但在x=0处不可导的奇函数
(C)可导的偶函数
(D)连续,但在x=0处不可导的偶函数
的导函数在0处的左右导数存在且相等,故可导
(三)导数的应用
1.求渐近线
求某函数的斜渐近线:
一般方法:
由此可知:斜渐近线的形式为:
故可将函数泰勒展开为:
2.方程根的个数即存在性
1)存在性:罗尔定理和零点定理
2)根的个数:单调性和罗尔定理推论
罗尔定理推论:若在区间上
,则方程
在区间
上最多有n个根
证明:
反证法:设函数
在区间
上有n+1个根,分别为
那么根据罗尔定理可知:每两个根之间必存在
使得
继续
对使用罗尔定理知道每两个
之间必存在一点
使得
以此类推得
,故假设不成立,得证
例题设f(x)在[1,2]连续,(1,2)可导且f(1)=1/2,f(2)=2,证明
1)分析法
![]()
令
,即证F'(x)存在零点
F(1)=F(2)=1/2,故存在一点
2)微分方程法
![]()
令
,即证F'(x)存在零点
F(1)=F(2)=1/2,故存在一点
总结可得对于求证 :
,构造辅助函数:
![]()
,构造辅助函数:
不定积分
(一)两个基本概念
原函数
不定积分
(二)原函数的存在性
1)如果函数在区间
上连续,则函数
在区间
上必有原函数
2)如果函数在区间
上有第一类间断点,则函数
在区间
上没有原函数
(三)不定积分的性质
(四)基本积分公式
(五)三种主要积分法
(六)三类常见可积函数的积分
1)有理函数积分
2)三角函数积分:
(1)一般方法 (万能代换)
令,
3)简单无理积分
令
定积分
(一)定积分的存在性
1)必要条件,f(x)有界
2)充分条件
(1)f(x)在区间[a,b]上连续
(2)f(x)在区间[a,b]有界且有有限个间断点
(3)f(x)在区间[a,b]仅有有限个第一类间断点
(二)定积分的计算
公式:
区间再现
(三)变上限积分函数及其应用
(1)连续性:设f(x)在[a,b]上可积,则在[a,b]上连续
(2)可导性:设f(x)在[a,b]上连续,则在[a,b]上可导
如果f(x)在[a,b]上除了处,其余地方都连续
在x=处,原函数
1)f(x)连续 =>可导
2) 为可去间断点,则
3)为跳跃间断点,则F(x)在
处连续不可导
①f(x)在[a,b]上连续 => 是f(x)在[a,b]上的原函数
②f(x)在[a,b]上有第一类间断点 ≠> 是f(x)在[a,b]上的原函数
例题:设f(x)连续,且f(0)≠0,求极限
① 令x-t=u,
洛必达:
微分中值:
② 令x-t=u,
![]()
等价代换:
![]()
![]()
证明积分不等式的常用方法:
1)定积分不等式性质
2)变量代换
3)积分中值
4)变上限积分
5)柯西积分不等式:
已知函数f(x)在区间[a,b]上连续且单调增加
证明:
令
因为F(b)=0,且F(x)单减,F(x)在[a,b]上恒大于0
证明不等式:
由于
所以
反常积分
(一)无穷区间上的反常积分
定义:定积分取极限
判别:
(1)比较审敛法
(2)比值审敛法
(3)p积分:发散
(二)无界函数的反常积分
定义:
判别同上
p积分:收敛
函数
定义:收敛
递推公式:
几何应用
平面区域由r=r(θ),θ=α,θ=β围成
面积:
旋转体体积
封闭区域D绕区域外直线ax+by+c=0旋转所得旋转体体积
区域D上某点到旋转轴得距离:
旋转体体积:
(1) 取区域D上一极小区域,绕旋转轴旋转得一圆环体积 (2)再次对D区域所有小
积分得体积
曲线弧长
旋转体侧面积
(1)取曲线上极小一段弧s,绕旋转轴旋转得一圆环面积 (2)再次对S上所有小s积分可得所有小s得面积和
物理应用
常微分方程
(一)常微分方程的基本概念
(二)一阶微分方程
1.可分离变量方程
2.齐次方程
3.线性方程
通解为:
4.伯努利方程
令
等式两边同除于:
最终化为关于t的一阶线性方程:
5.全微分方程
判定:
(三)可降阶的高阶方程
1)
2)
令
3)
令
(四)高阶线性微分方程
1.线性微分方程的解的结构
齐次方程
y"+ p(x)y' +q(x)y=0 (1)
非齐次方程
y" + p(x)y' +q(x)y= f(x) (2)
定理1:如果和
是齐次方程(1)的两个线性无关的特解,那么
为该方程通解
定理2:如果是非齐次方程(2)的一个特解,那么
为该方程通解
定理3:如果和
是非齐次方程(1)的两个线性无关的特解,那么
为齐次方程的解
定理4:如果和
分别是非齐次方程
那么 :为
的一个特解
2.常系数线性微分方程
3.常系数非齐次线性微分方程
4.欧拉方程
形式:
令
(1)
(2)
以此类推,设D为y对t的求导,则有
设p(x)在区间[a,b]上连续,y(x)在区间[a,b]上有二阶导数,且满足
y''(x)+p(x)y'(x)-y(x)=0,y(a)=y(b)=0
则在[a,b]上y(x)
y(a)=y(b)=0,若存在极大值点x,则有y''(x)-y(x)=0,y''(x)>0,不符合
同理,若存在极小值点x,则有y''(x)-y(x)=0,y''(x)<0,不符合
故y(x)在[a,b]上既没有正的极大值也没有负的极小值
微分方程
满足初始条件
的特解为
令
,原式化为
微分方程
满足x=1时y=2的特解是
微分方程
的通解是
微分方程
的通解
令
,原式化为
微分方程
的通解是
所以
微分方程
![]()
设函数y=f(x)满足方程
求反常积分
由
可设
根据表达式可知
已知f(xy)=yf(x)+xf(y)对任意的x,y均成立,且f'(1)=e,则f(xy)的极小值为
得到微分方程
令
多元函数微分学
(一)重极限 连续 偏导 全微分
(1)重极限
[注]:任意方式趋向
证明极限不存在:
(2)连续
(3)偏导数
(4)全微分
定义
一组A,B使得上式子成立即可微
判定:
1)必要条件:存在
2)充分条件:在
处连续
3)定义
a)是否都存在
b)是否为0
例题:
存在,
在
处连续,证明
在
处可微
证明:
因为
在
处连续,所以微分中值定理得
因为
存在,所以根据偏导数定义
得
得证
(二)偏导数与全微分的计算
1)复合函数求导法
2)隐函数求导法
1.由一个方程所确定的隐函数
设有一阶连续偏导数,
,知道
由
所确定
隐函数存在定理 :
公式法:
2.由方程组确定的隐函数
设是由
所确定
(1) 等式两边求导
(2)微分形式的不变性
例题:若对任意t>0有,
,则称函数为n次齐次方程
证明:
可微是n次齐次函数 <=>
必要性:
由
可得:
令t=1:
得证:
充分性:
令
则:
有:
因为
,所以
结论:如果
可微是n次齐次函数 <=>
![]()
(三)极值与最值
(1)无条件极值
(2)条件极值与拉格朗日函数
(3)最大值最小值
设
, 记
设y=f(x,t),而t是关于F(xy,t)=0所确定的关于x,y函数,其中f,F具有就一阶连续偏导数
则
设
与
均为可微函数,且
,已知点
是
在约束条件下
下的一个极值点,下列选项正确的是
(A)若
,则
![]()
(B)若
,则
![]()
(C)若
,则
![]()
(D)若
,则
构造拉格朗日函数:
有:
所以:
![]()
已知
,求
联立两方程消去z
联立两方程消去y
已知函数
满足方程
,确定参数a,b
利用变换
将原方程变形,使新方程中不含一阶偏导项
可得:
,原方程化为
设A,B,C,为常数AC-B^2<0,A≠0,u(x,y)具有二阶连续偏导数
证明:必存在非奇异线性变换
将方程
化为
设
可微,又设
(1)当r≠0时,用u对r,θ
的一阶偏导数表示
二重积分
(一)二重积分的计算
设
记
![]()
令
有
所以
![]()
设函数f(x)为[0,1]上的1连续函数,且0≤f(x)<1,利用二重积分证明不等式
无穷级数
(一)常数项级数
(1)级数的概念与性质
1)正项级数
2)交错级数
3)任意项级数
(2)级数的审敛法则
1)比值法
2)根值法
3)积分判别法
设f(x)是[1,+∞)上单调减,非负的连续函数,且an=f(n),则
与
同敛散
4)交错级数:
莱布尼茨准则:
(1)单调递减(2)
则 收敛
5)任意项级数
绝对收敛与条件收敛:
①绝对收敛的级数一定收敛
②条件收敛的级数其正项(或负项)构成的级数必定发散
设级数
收敛,且正项级数
收敛,则级数
收敛,则
存在,故绝对收敛
设
,则
级数
都收敛,则级数
也收敛
, 级数
都收敛
所以
收敛
下列命题中正确的是
(A)若
收敛才可以比大小
(B)若
收敛
收敛
(C)若
,
收敛,则
收敛
(D)若
,级数
都收敛,则级数
也收敛
B,C均属于对正项级数的判定定理,不符合任意项级数
下列命题正确的是
(A)设
收敛,则
(B)设
收敛,且当
时
是等价无穷小,则
亦收敛
(C)设
都收敛,则
也收敛
(D)设
都收敛,则
也收敛
A若a为正项级数,则有a_n<1\n,对于任意项级数不符合如调和级数收敛但极限
不存在
B对于正项级数成立,
C当n充分大时
收敛所以
也收敛
D
已知
收敛,λ为正常数,则级数
,故绝对收敛
设
是f(x)的以2Π为周期的傅里叶级数,则
证明级数
条件收敛
因为
,由比较判别法知
发散
又因为
单减
再由
知
单调有下界,故收敛,记
,知
所以原级数的前n项部分和数列收敛,从而级数收敛,所以原级数条件收敛
设f(x)在[0,+∞)上连续,反常积分
收敛,令
证明级数
收敛
令
由正项级数的比较判别法可知,级数
收敛
求幂级数
的收敛域与和函数
求级数
的和函数
或者
有
设数列
满足
证明在
时
幂级数
收敛,并求其和函数与系数
![]()
将
展开为x的幂级数
所以
已知幂级数
,则和函数S(x)为
令
,则
(二)幂级数
(1)收敛半径 收敛区间 收敛域
定理1:阿贝尔定理
若处收敛则当
时,
绝对收敛
若处发散则当
时,
发散
若幂级数处条件收敛,则该点为幂级数收敛区间端点
(2)幂级数性质
有理运算性质:
设的收敛半径为
,
的收敛半径为
(1),
(2)
(3)
分析性质:
设幂级数的收敛半径为
,且和函数为
(1)连续性:和函数S(x)在其收敛域上连续
(2)可导性:和函数S(x)在收敛区间上可导,且可逐项求导,半径不变
(3)可积性:和函数S(x)在收敛域上可积,且可逐项求积,半径不变
(3)函数展开为幂级数
定理1:如果函数f(x)能够在上展开为
的幂级数
,则展开式是唯一的
定理2:设f(x)在处任意阶可导,则
在收敛于f(x) <=>
其中为f(x)在
处的泰勒余项
1)直接展开法:
(1)逐项求导
(2)判断是否存在
2)间接展开法
(三)傅里叶级数
设以为周期的函数
在
上连续或只有有限个间断点,且至多只有有限个极值点,则
的傅里叶级数
在上处处收敛,记其和函数
设函数f(x)连续且满足f(x+Π)+f(x)=0,则f(x)以2Π为周期的傅里叶系数
同理
可知
设f(x)为任意阶可导函数,且
,将函数
展开为x的幂级数
根据
可知
即
因
设x>2,证明
令
代入
,则
即
证明
,并求
,令
对f(x)偶延拓
得证
令
,x为奇
,x为偶则为0
故
多元函数微分学
(一)向量 空间直线 空间曲线
(二)方向导数
设三元函数在点
的某空间邻域有定义,
为从
出发的一 条射线
t>0,表示P与P0间距离
存在,则称此极限为函数在点
处沿
的方向方向导数,记作
如果函数在该点处可微,则函数在该点处沿任一方向的方向导数都存在
为方向
的方向余弦
如果函数在某点处有一阶偏导存在,则函数在该点处 梯度为
二元函数在一点处可微是其方向导数存在的充分条件
二元函数在一点连续既不是其方向导数存在的充分条件,也不是其必要条件
三重积分
积分方法
1)直角坐标系
(1)先一后二 (2)先二后一
2)柱面坐标系
3)球面坐标系
4)对称性,形心公式的逆用
第一型曲线积分
1)投影到x轴或y轴
公式: ,
平面:
空间:
2)对称,形心
第二型曲线积分
1)
格林公式转为面积分(封闭曲线L围成的平面),以逆时针内侧为正
2)化为一元函数定积分
3)斯托克斯公式
本质投影到三个坐标平面
另一种形式:
第一型曲面积分
1)投影到坐标平面(xoy,yoz,xoz)投影点不能重合
公式:
第二型曲面积分
1)投影到三个坐标平面
2)高斯公式
公式:
是
边界曲面外侧
设函数f(x,y)在区域D={(x,y) | x^2+y^2≤1}上二阶偏导数连续,且满足
,则
在极坐标系下
反向使用格林公式得
再使用格林公式
设函数f(x,y,z)在区域
上具有连续二阶偏导数
且满足
计算
利用转换投影法设球面
外侧方向余弦
有
①
②
分别对①②使用高斯公式有
①
②
4197

被折叠的 条评论
为什么被折叠?



